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COMPARISON OF FIVE SYSTEM IDENTIFICATION ALGORITHMS FOR

ROTORCRAFT HIGHER HARMONIC CONTROL

Stephen A. Jacklin

Ames Research Center

SUMMARY

This report presents an analysis and performance comparison of five system-identification

algorithms. The methods are presented in the context of identifying a frequency-domain transfer

matrix for the higher harmonic control (HHC) of helicopter vibration. The five system-

identification algorithms include three previously proposed methods: (1) the weighted-least-

squares-error approach (in moving-block format), (2) the Kalman filter method, and (3) the least-

mean-squares (LMS) filter method. In addition there are two new ones: (4) a generalized Kalman

filter method and (5) a generalized LMS filter method. The generalized Kalman filter method and

the generalized LMS filter method were derived as extensions of the classic methods to permit

identification by using more than one measurement per identification cycle. Simulation results are

presented for conditions ranging from the ideal case of a stationary transfer matrix and no

measurement noise to the more complex cases involving both measurement noise and transfer-

matrix variation. Both open-loop identification and closed-loop identification were simulated.

Closed-loop mode identification was more challenging than open-loop identification because of

the decreasing signal-to-noise ratio as the vibration became reduced. The closed-loop simulation

considered both local-model identification, with measured vibration feedback and global-model

identification with feedback of the identified uncontrolled vibration. The algorithms were

evaluated in terms of their accuracy, stability, convergence properties, computation speeds, and

relative ease of implementation. With the exception of the weighted-least-squares-error technique,

all of the identification methods were found to be suitable for on-line system identification, and all

were found to produce about the same amount of identification error in closed-loop operation.

However, the algorithms clearly differed with respect to their formulation, ease of implementation,

and computational speed. The single-step LMS filter was not only computationally the fastest

identification method, but was also the easiest to implement because it required the specification of

only one tuning parameter. Although the generalized LMS filter implemented with a batch size of

4 was slower than the single-step version, it also produced somewhat superior identification

accuracy. The generalized Kalman filter, though not as fast nor as easy to tune as the LMS

methods, produced the lowest system identification error using a batch size of 4 with the local

model. Neither the elimination of a recursive equation in the generalized Kalman filter formulation

nor the reduction of tuning parameters by the LMS and generalized LMS formulations was seen to

impair identification accuracy when compared to the classic Kalman filter.



1. INTRODUCTION

In forward flight, asymmetrical airflow through the helicopter rotor causes large vibratory

forces and moments to be generated on the rotor blades. The blade loads may be additionally

affected by the presence of rotor blade stall, shock waves (compressibility effects), or by the blades

striking the trailed vortices of other blades at one or more places around the rotor azimuth (fig. 1).

For an N-bladed rotor, these harmonic air loads produce large oscillatory blade-root shear forces

and bending moments which are experienced as N-per-revolution (N/rev) vibration in the fuselage

reference frame. This vibration degrades the ride quality of the helicopter and shortens the life of

critical rotor hardware.
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Figure 1. Origin of rotorcraft N/rev air loads and vibration.
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Since passive vibration control methods (such as pendulum absorber and modal placement

methods) have not been totally successful (ref. 1), active control methods have been proposed to

help alleviate the helicopter vibration problem. The most widely studied method is the higher

harmonic control (HHC) technique whereby the rotor blades are oscillated at the N/rev frequency

to cancel the vibration at its source. In this approach, accelerometers can be used to measure the

fuselage vibration while suitable swashplate actuators can be used to induce the N/rev blade-pitch

commands. Figure 2 illustrates the basic HHC vibration control-loop. To implement this control

scheme, however, it is necessary to know the manner in which the N/rev blade-pitch inputs

influence the N/rev components of vibration.

Swash plate
actuators

FIT of
acceleration

"Sl" Sin N

C1 Cos N ¥

S2
C2

•

Sn

Cn

Vibration
metric

_z

Identification
methods

• WLSE
• LMS
• Kalman filters
• GLMS
• GKF

Deterministic
controller

Figure 2. Helicopter vibration control loop.

Early work in achieving this understanding focused primarily on seeking a simple set of HHC

input amplitudes and phases that would allow reduction of the vibration throughout the flight

regime of the helicopter. Stewart (ref. 2) proposed the application of 2/rev control inputs to delay

the onset of retreating-blade stall. The method was extended to include 3/rev input by Arcidiacono

(ref. 3) in 1961, and then flight tested on a UH-1A, two-bladed, teetering rotor. This test showed

that the 2/rev input had a marked effect on rotor vibration (ref. 4). Nearly a decade later, Sissingh

and Donham (ref. 5) and McCloud and Kretz (ref. 6) applied HHC to four-bladed rotors. Sissingh

and Donham showed that HHC could suppress the blade flap-bending oscillatory loads, while

McCloud and Kretz, using a jet-flap rotor, showed that substantial fuselage vibration reduction

could be achieved by using HHC. Moreover, McCloud also calculated a set of influence
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coefficientswhich attemptedto relatethe effectsof harmoniccontrol input on the harmonics of

measured vibration. This originated the idea of the transfer-matrix model.

In 1975, McCloud further advanced the idea of a transfer matrix relating the harmonics of

control input to the harmonics of measured vibration for a four-bladed, articulated, controllable-

twist rotor (ref. 7). This transfer matrix was used to determine the HHC input magnitudes and

phases required to minimize the sum of the squares of the vibratory loads. When tested full-scale

in two wind tunnel tests, it was shown that HHC could substantially reduce the rotor-blade bending

loads (McCloud and Weisbrich (ref. 8)), as well as the N/rev vibration at fuselage (test stand)

stations instrumented with accelerometers (Brown and McCloud (ref. 9)). This work clearly

established the validity of using a linear transfer matrix to relate the harmonics of HHC input to the

harmonics of measured vibration output. However, at the same time, this work also showed that

the transfer matrix was not invariant with airspeed, but rather was strongly dependent on the flight

conditions. This finding was subsequently confirmed by Shaw and Albion (ref. 10) using a model-

scale, four-bladed, hingeless rotor.

Shaw and Albion also demonstrated the feasibility of designing a closed-loop, HHC vibration

control system based on using a transfer matrix in a deterministic control law (discussed in sec.

5.3). To be effective at several flight speeds, however, a way had to be found to adapt or re-

identify the transfer-matrix elements with each flight condition. For this purpose, Shaw decided to

use a Kalman filter which proved to be successful in low-speed flight. In a later work however,

testing HHC on a three-bladed, small-scale CH47D rotor, Shaw achieved the same vibration

reduction performance (up to 90% reduction) using transfer matrices identified off-line. In this

approach, separate transfer matrices were identified at each flight condition off-line, and then

subsequently used in the controller (ref. 11). This approach was preferred over the Kalman filter,

which sometimes had difficulties. Indeed, several other researchers of HHC also reported similar

problems when using the classic Kalman filter system identification method (refs. 12-18).

The classic Kalman filter approach, which many believe to be the best on-line method of

system identification, performs the system identification using only the most recent measurement

to update the estimate of the identified parameters (or transfer matrix). This makes the Kalman

filter computationally efficient. The difficulty in using the classic Kalman filter, however, is that

the statistical information needed to implement the filter is often poorly known. For example, exact

knowledge of the vibration measurement-noise spectrum and error covariance is required. If not

tuned correctly, the Kalman filter may not be able to distinguish errors in the measurements from

true changes in the parameters, leading to either unresponsive identification performance or a

display of stability and convergence problems. These problems motivate the search for alternative

system-identification algorithms which can produce near optimal Kalman filter identification

accuracy, yet are more easily implemented and less prone to the destabilizing effects of

measurement noise and un-modeled dynamic behavior.

With this goal in mind, this report seeks to compare the identification performance of four

other system identification methods with that of the classic Kalman filter. These algorithms are the

weighted-least-squares method in moving-block format, the generalized Kalman filter method, the

least-mean-square (LMS) filter method, and generalized LMS filter methods. These algorithms

differ from the classic Kalman filter method in that they place less reliance on user-supplied tuning
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information than the classic Kalman filter method or in that they are computationally more

efficient. In fact, the LMS filter method is a single-step identification technique which resembles

the Kalman filter method in some ways, but is considerably less complex in its implementation.

The order of the report is as follows. After a brief description of the helicopter system-

identification problem for HHC, a detailed description and derivation of each of the five system-

identification methods is presented. Then the computer program used to simulate the identification

methods is briefly described, and the computational efficiencies of the identification methods are

compared. After that, the open-loop and closed-loop identification performance results are

presented. The closed-loop simulation considered both local-model identification with measured

vibration feedback and global-model identification with feedback of the identified uncontrolled

vibration. Last, some comparisons between the methods are made and the conclusions are

presented.

Note that throughout the text, letters designating matrices are printed in boldface.

2. SYSTEM IDENTIFICATION MODELS

Adopting the transfer-matrix modeling approach, the relationship between the HHC control

input harmonics and the harmonics of vibration output can be linearly expressed as

Zk =TOk +z° (1)

In this representation, z k is an (i x 1) vector representing the sine and cosine harmonics of vibration

at step k, Ok is a (j x 1) vector representing the sine and cosine harmonics of N/rev blade-pitch

control at step k, and T is the (i x j) transfer matrix relating the harmonics of vibration to the

harmonics of control. The vibration vector, z, could represent the N/rev sine and cosine

accelerations measured by i/2 fuselage accelerometers. Since most helicopter swashplates are

controlled using three actuators in the fixed-system, the dimension ofj is usually 6. Equation (1) is

referred to as the global model of helicopter harmonic vibration. Note that the baseline vibration

present with no HHC control (0 = 0) is therefore zo.

An alternative representation is to model the relationship linearly in a local region about the

current conditions. If equation (1) is applied to two successive simulation steps, namely k and k-1,

two equations are formed,

z_=T0k+z o

Zk_I = T 0k_ I + Zo

which, if subtracted from each other yield the local-model representation as

Az = T A0 (2)



wherethechangesin vibration,Az,andthechangesin control,A0, arecomputedfor simulation
stepk as

AZ -- Z k -- Zk_ I

A0 = 0_ - 0k-i (3)

Using either model, the identification problem is to determine the coefficients of the transfer

matrix, given knowledge of the control inputs and measured vibration outputs. Since the transfer

matrix will typically vary with the helicopter operating conditions (e.g., thrust, airspeed), the
methods used for transfer-matrix identification should be "on-line" methods which can track or

estimate the transfer matrix based on the information contained in the most recent control inputs

and vibration outputs.

Given knowledge of the transfer matrix, it is possible to compute a minimum-variance control

law of the type described in section 5.3 below. When using the local modeling, the identified

transfer matrix and measured vibration are used in the control law to calculate the optimal change

in control needed to cancel the measured vibration. Using equation (2), the optimal change in

control is computed as

A0ov r = -T"z (4)

since the change in vibration desired is the opposite of the amount of remaining measured

vibration z. Note that in this nomenclature, T _ is regarded as a pseudo-inverse, since T is not

required to be a square matrix. If the global modeling is used, the identification routine is also used

to identify the uncontrolled vibration, z,,. Using equation (1) to cancel the vibration (i.e., make z =

0),

0orr = -TlZo (5)

Therefore, it can be seen that if the transfer matrices defined by equations (1) or (2) exist,

computing the optimal vibration controls is a relatively simple matter after the transfer matrices
have been identified.

3. ANALYSIS OF IDENTIFICATION ALGORITHMS

This section presents an analysis of the five identification algorithms. Through analysis, the

important limitations of the methods can be more fully understood. Of central importance is a

review of the underlying assumptions concerning the stochastic environment in which each

method is designed to operate.



Thefollowing analysesfor eachof thefive identificationmethodsarepresentedin termsof the

local-model notation. The derivations, however, are exactly the same for the global model because

equations (1) and (2) can be transformed into the same equation form. This is easily seen by

rewriting these equations in matrix form and using partitioned matrices and vectors for the global

model. If that is done, then the global model (z = TO + z,,) can be written as

Lz,j ...... IZo,

and the local model can be written as

(6)

l zlI ......,1[
LzXz,j LT,, ...... T,,jL XO,. (7)

Equations (6) and (7) are of the same form and are equivalent mathematical expressions of

equations (I) and (2), respectively, assuming that the system is truly linear. The only difference is

that the global model (eq. (6)) requires that a "1" be appended onto the control vector so that the

last column of the identified transfer matrix represents the uncontrolled vibration. In actual

application, however, nonlinearities in the plant dynamics cause these models to differ. They are

only truly equivalent for the case of a time-invariant linear system.

3.1 Weighted-Least-Squares-Error Method

The technique of ordinary least squares has been around as long as the concept of

identification. It was independently formulated by Legendre and Gauss in the early 1800s to

identify constant parameters in the presence of measurement noise. Today, nearly all methods of

parameter identification, whether off-line or on-line, stem from this important technique. This

method assumes that a batch, or set of command inputs and response outputs, is available at the

start of the calculation. The method makes no assumptions other than that the measurement errors

have a normal distribution about the mean (i.e., broadband measurement noise). The batch size

must be no less than the number of parameters (per row) to be identified, and may be made larger

to reduce the effects of measurement noise on the identification process. The method is non-

recursive and is therefore always convergent, provided that the plant excitation commands used in

the identification are always linearly independent.

In order to adapt the weighted-least-squares-error (WLSE) method to the helicopter on-line

system identification problem, the calculations must be limited to a history of the number of the

most recent control commands and vibration measurements (n). Then the excitation commands and



correspondingresponsemeasurementscanbegroupedinto block matrices.Usingthe local-model
representation,theseblock matricesare

[i i1O= A0(1 ,A0(2) ...... A0(n-1),A0( )

(8)

Ii ilZ= Az(1 ,Az(2) ...... Az(n-1),Az( )

(9)

In this context, the A00 terms represent the changes to the (j x 1) input control commands, the

Az0 terms represent the corresponding changes to the (i x 1) vibration outputs, and n is the number

of measurements in the batch. The identification problem is to identify T given knowledge of Z

and O.

The approach used by the WLSE method (and basically by all other identification methods) is

to find an estimate of T which minimizes the errors produced between the measured output and the

output predicted using the estimate of T and the input. This error can be expressed for each row of
the transfer matrix as

Ei = Z i - T iO (10)

(I x n) : (I x n)- (I xj)(j x n)

where E_is the error and T_ is any row of the transfer matrix. (Note well: z(1) is a column vector

denoting the first measurement over all output channels or, equivalently, the first column of Z.

However, Z_ is a (1 x n) row vector denoting the n measurements from channel 1 or, equivalently,

row 1 of the Z matrix.) As the name implies, the approach used by the WLSE method is to

minimize the weighted sum of the squares of the errors for the inputs and outputs used in the

calculation batch. (The error is raised to an even power so that positive and negative errors are

treated uniformly.) By taking the weighted dot product of the error vector, a scalar identification

index, JtD, can be formed as

Jm = eiWe_

Jm = (Z, - T_O)W(Z, - "rio) T

JID = Zi WZT - ZiWOT'ri T - rriowz? .at-TioWOTTi T (11)
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where W is an (n x n) diagonalweighting matrix. As will be seen in comparison to the other

system identification methods, this type of quadratic error equation is common to all the other

methods of system identification presented in this report.

To find the value of T_ which minimizes the quadratic performance index of equation (11), the

partial derivative with respect to T_ is computed,

°lJ,D = -2OWZi T + 2oWOTTi T

Setting this partial derivative equal to zero (to find the minimum), the WLSE estimate of Ti is

(12)

Ti __ ZiwoT(owoT)-I (13)

(I x j) = (I x n)(n x n)(n x j) [ (j x n)(n x n)(n x j) ]-I

This linear equation is the weighted-least-squares estimate of the transfer-matrix row. Note that if

the performance index had been quartic, e4, the derivative would have been cubic. The difficulty of

handling a cubic identification law (with three minimas possible) is why the least squares-approach

is so convenient for analysis.

It follows from equation (13) that the WLSE estimate for the entire transfer matrix can be
formed as

T = zwoT({_)woT) -1 (14)

(i x j) = (i x n)(n x n)(n x j) [ (j x n)(n x n)(n x j) ]-1

where the weighting matrix W is the same for all measurement channels. (Note that a different

weighting matrix for each input channel could be accommodated by applying equation (13) for

each row of the transfer matrix.) For ordinary least squares, W is an identity matrix. Then

identification errors at all steps are counted equally in the optimization process. As n becomes

larger, the effect of equal weighting at each time-step is to average out white or wideband
measurement noise.

However, it often arises that variations in the system parameters over time create a situation in

which the more recent measurements will better reflect the true system state. For example, the

helicopter air speed may suddenly change. In that case, the identification performance may be

improved by placing greater weight on the more recent measurements. It has been shown (refs. 19,

20) that the optimal weighting matrix is the inverse of the measurement-noise covariance matrix.

For measurement noise with a normal distribution, this choice of weighting produces the well-

known maximum likelihood or best linear unbiased estimate. In general, however, the values of the

measurement-noise covariance matrix (see eq. (18) for the scalar definition) are unknown because

the system transfer matrix is unavailable for use in the computational process.



A moreconvenientmethodof weight selectionis presentedin reference19,wherethe weights
for thediagonalelementsof W, w(k), aregeneratedas

w(k) = a7 ("-k) 0 < 7 < 1
(15)

where n is the number of measurements in the batch and k denotes a specific measurement in the

batch for which k = n is the most recent measurement. If y = 1 and ct = 1, the weighting matrix is

the identity matrix. As T is reduced, less weight is placed on the least recent measurements. One

consideration governing how far 1' should be reduced is that smaller values will tend to amplify the

effects of measurement noise on the most recent measurements by making the batch size

effectively smaller.

It should be noted that equation (14) has certain limitations. First, the calculation batch size n

must be larger than the row dimension of T (or larger than the number of elements in the control

vector). Second, the weighted control-covariance matrix, [O W O r] must not have a lower rank

than the number of elements in the control vector 0. If that happens, the control covariance matrix

becomes singular, and the inversion cannot be performed. This situation arises when the control

vectors within the covariance matrix are redundant or linearly dependent. Of course, this problem

is easily avoided in open-loop identification by selecting excitation commands randomly.

However, for closed-loop control, when the commands are selected to minimize the (vibration)

response vector, avoidance of this problem is not easy. If the controller should calculate nearly the

same control input from one cycle to the next (as should happen about the steady-state optimal

input), the control covariance matrix will tend toward singularity, and the identification accuracy

will degrade as the singularity worsens.

A good way to avoid the singularity problem is a subject of debate. The most obvious

possibility would be to ignore the singularity problem altogether and allow the identification

process to produce an improper transfer matrix. The control based on the resulting erroneous

estimate would then serve to automatically generate a perturbation excitation signal. However,

steady-state controller performance would likely be erratic. Another solution would be to prevent

the control commands from ever becoming linearly dependent by constantly introducing a random

perturbation component to the control signal. This would also degrade steady-state control

performance, but might make the controller behavior less erratic. A third solution might be to shut

off the identification process during periods when the changes in control are sufficiently small. The

merits of each approach were evaluated through simulation.

3.2 Classic Kalman Filter Method

Though identification by the WLSE method is relatively easy to implement and to understand,

its calculation batch size limits its ability to identify rapidly changing variables. This provides the

motivation to find faster identification algorithms that have fewer computations and that use fewer

measurements. The Kalman filter method is perhaps the most widely known and accepted method

of a class of computationally efficient algorithms designed to update parameter estimates on the

basis of a single measurement. The Kalman filter has been widely used in a number of aerospace
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applications.In fact,many investigatorsof higherharmoniccontrol conceptshaveproposedusing
theKalmanfilter to identify frequency-domaintransfermatrices(for example,seerefs. 10, 12-14,
16-18,21).The Kalmanfilter is derivedby convertingthe leastsquaresalgorithm into a recursive
methodby accumulatingtherankof thefirst inversion.This solutionis referredto astherecursive-
least-squares-estimationmethod. However, the recursive-least-squaresalgorithm was not
simulatedseparatelyin this studybecause,aswill beshown,it is aspecialcaseof themoregeneral
Kalmanfilter theory.

Thecomputationalspeedof theKalmanfilter resultsfrom not computingthevaluesof certain
quantitiesthat define the stochasticidentificationenvironment.Thesevaluesarepresumedto be
known. As will beshown below, they include knowledgeof startingestimatesfor the transfer
matrix, the transfer-matrixcovariance,the measurement-noisecovariance,and the process-noise
covariance.The degreeto which this information is actually known is critical in designingthe
filter for optimal performanceand stability. Usually, however, this information is not readily
available,andtheusermustusetrial anderror to find thecorrectvalues.

Sincethe completederivation of theKalman filter is well explainedby manyexcellent texts
(refs. 19-22),only theessentialsof the derivationprocesswill beoutlinedhere.Derivation of the
Kalmanfilter beginsby assumingthat themeasurementandprocessnoiseshavezero (or known
constant)meanvalues:

E(Az i - _A0) = 0 (16)

E(T_-T,*)=0 (17)

respectively, where T,* represents an estimate of the ith transfer-matrix row and E{... } denotes

"expected value." The associated covariance matrices (also assumed to be known) are represented

by diagonal, positive definite matrices, r_ and M_, as

E[(az,- Za0) T(az,- Za0)] = r, (18)

E[(Ti , T-X, ) (T,-T,*)]= M, (19)

where r, is a scalar which is the measurement-noise variance and M i is the process-noise

covariance matrix. Equations (16) and (17) state that the distributions of measurement and process

noises have a zero mean value. Equations (18) and (19) state that the variance and covariance of

the measurement (18) and process (19) noises are known, assuming a Gaussian distribution of

measurement and process noises. Although obtaining an estimate of the transfer-matrix row T,* is

not difficult (from least squares), evaluation of r_ and M_ requires operation of the filter to produce

T_. This is troublesome, since r_ and M_ must be specified to start the filter.

The solution to this dilemma is to guess the correct initial values for r_ and M_. This is called

"tuning the filter." Sometimes, r_ and M_ can be selected on the basis of some rationale (refs. 14
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and 22 give some),but in most casesguessingis required. This is an awesometask for the
proposedhelicopteridentificationproblem,becausefor a typical (6 x 6) transfer-matrix,6 values

for r_and 146valuesfor M i (6 * [6 x 6]) would requirespecification.(Note thattheMi covariance
matrix is symmetric.)

A sensiblealternativecommonlyemployedis to makemoreassumptionsregardingthe nature
of r_andM_ in order to simplify the tuning problem.Oneassumptionoften madeis that the M_
matricesarediagonalmatrices,whosediagonalelementsareall equal.A furtherassumptionis that
the r_and the M_arethe samefor eachrow of thetransfer-matrix.Theseassumptionsmay or may
not bejustifiable. However,with theseassumptions,thetuningparameterselectionproblemcanbe
reduced to a two-parameterselectionproblem. In the aboveexamplewith the (6 x 6) transfer
matrix, for example,the6 + 146tuningparametersreduceto only two. M_is still amatrix, but with
diagonal form and all the diagonalelementsareequal. Its specificationis then like choosinga
scalarquantity.

It is very important to note that althoughtheseassumptionsareconvenient,they corrupt the
most basicpremisesof the Kalmanfilter theory.The filter is only optimal if the input valuesfor
the measurement-andprocess-noisecovariances(r_andM_)arecorrect.To seethis, consider the
Kalman filter asone minimizing theweightedsumof theprocessand measurementnoises.Like
the least-squaresmethod,this canbe expressedasthe minimizationof a quadraticidentification
performanceindex,JtD,

J ID = (Azi - Ti A0)ri-I (Azi - Ti A0)T + (Ti - Ti *)Mi-I (T i _ Ti ,)T (20)

where r_" and M_" are the optimal weighting parameters. The minimum value of JID occurs when

the partial derivative of J_Dwith respect to T_ is zero, or

0 = (riA0fi-lAOT)- (Aziri-lA0 T) -r i * Mi -1 +TiMi -I (21)

It is then possible to arrange the terms in equation (21) to produce an update equation for T_ as
follows:

Ti(Mi -I + A0ri-lA0 T) = r i * Mi -I + Aziri-lA0 r

or,

Ti(Mi -I + A0t_-IA0 T) = T_ * (Mi -_ + A0ri-lA0 T ) q- (Az i - T i * A0)ri -I A0 T

which can be rewritten as

(22)

T i = T i * -,i-(Azi - T i * A0)ri-lAOTpi (23)

12



where,by definition, P, is

ei = (Mi -I + A0ri-lAOT) -I (24)

Equations (23) and (24) define a formula for the calculation of T_, given M i and r_.

Unfortunately, equation (24) requires inversion of a (j x j) matrix, which is computationally

troublesome. This can be avoided, however, by using the matrix inversion lemma,

(A + BCD) -_ = A -I - A-_B(C -I + DA-IB) -_ DA -I

Assigning

equation (24) may be expressed as

A = M; I

B=A0

C = r,-t

D = A0 T

(25)

Pi = Mi - MiA0(ri + AOTM,AO) -I AOTMi (26)

which now only requires inversion of a scalar. Equations (23) and (26) are update equations for the

transfer-matrix row identification and may be computed after each new measurement. Equation

(23) shows that the new estimate of the transfer-matrix row is equal to the old estimate plus a

correction term. The correction term is proportional to the error between the change in measured

vibration state Az_ and the predicted change in vibration state (T_*A0), which would be zero, except

for measurement error in Az, and identification errors in T_. Since the Kalman filter is designed for

recursive calculation, T,* is usually understood to mean T_ at the previous time-step (it is estimated

for the first calculation). Starting values for the (j x j) P_ matrix can be computed from equation

(26) given M_ and r_. Note that if P_ is too large at the start or if it becomes too large, the filter will

tend to overcorrect, and the identification performance will be unstable. However, if P_ is too

small, the identification method will not be able to track rapidly changing T_ values.

Specification of the Kalman filter method is completed by appending equations that specify the

manner in which the parameter estimates (T_) and the covariance matrix (M,) change between

measurements. Usually, the T i variation is assumed to be a Gauss-Markov process whereby the

value of the parameter estimate at the next step is a function only of the estimate at the current step

and some process noise, or

T_(k+ I)= T_(k)O + ¢o,(k) (27)
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where • is the estimate transition matrix and toi is a random variable vector with an expected

value of zero. Then, subtracting the expected transfer-matrix value from both sides of equation

(27) we have,

T_(k+ I)- T_ * (k+ I)= [T_(k)-T_ *(k)]_ + aJ, (k) (28)

where T_* isthe expected value of T_.From equation (19)itcan be seen thatan update equation for

the process-noisecovariance matrix can be formed by manipulating each sideof equation (28) as

follows:

E{[T i(k + 1)-Ti* (k + 1)]T[Ti (k + 1)-T_* (k + 1)]} =

E{[_T(Ti(k)- Ti *(k))T + o)iT(k)][(_(k)-_ *(k))_+to,(k)]}

From which itisobtained directlythat

(29)

where

Mi(k + 1) = OMi(k)O T +Qi (30)

E[toi(k)T(.Oi(k)]= Qi (31)

Equation (30) derives directly from equation (29), keeping in mind that the T_ and to_ are

uncorrelated so that the expected value of the cross-product terms vanish. In order to use equation

(30), it is necessary to pick values for • and Q_, similar to that done for r_ and M_ above. Again,

this information is assumed to be known to the user, which is rarely the case in general, and

certainly not for the helicopter vibration control problem. Very commonly, • is chosen as the

identity matrix and Qi is left variable for algorithm tuning. Exactly analogous to the assumptions

made to simplify the selection of M_, the (j x j) Q_ matrix is usually reduced to the selection of a

diagonal matrix whose elements are all the same.

Equations (27) and (30) are to be computed between measurements. In the days of limited on-

line computational resources, it might have been useful to compute the variation in T_ and P_

between measurements. However, with today's computational power, the time between

measurements is so short that the application of these equations takes on a different purpose. This

is that Q_ adds a perturbation to M_ to prevent it from ever becoming zero; if that were to happen,

no further identification could take place. Similarly, mi is a perturbation to T_ which serves to add

probing, or a disturbance, to the identification process, desirable to keep the filter from becoming

nonadaptive.
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The Kalmanfilter equationscanbeplacedinto matrix form by assumingthat the r_valuesand
the Q_and M i matrices are the same for all rows of T, and that they are denoted as r, Q, and M,

respectively. Arranged in the order of their computational sequence after measurement, the

Kalman filter equations are then as follows:

P = M * -M * A0(r + AOTM * A0)-I AOTM *

T = T * +(Z - T * A0)r-_A0rP

(32)

(33)

M* = _p., + Q

T*=Tcb+w

(34)

(35)

These equations represent an optimal filter, given perfect knowledge of r, M, Q, _, and 03. In most

applications proposed for higher harmonic control, equation (34) is rewritten as

M* = P + Q (36)

(j xj) = (j x j) + (j x j)

assuming _= I and equation (35) is neglected. Equation (32) shows that a small value M*, once

obtained in the steady-state, will cause P to approach zero. This will make the Kalman filter update

in equation (33) zero, and no further improvement of the estimated transfer matrix will take place.

The Q matrix, therefore, serves to keep the P matrix from ever becoming zero. This is the key

strength of the Kalman filter over the recursive least-squares estimation technique. Although that

technique is not explicitly developed in this report, the recursive least-squares solution is a special

case of Kalman filter theory. As shown in reference 19, the recursive least-squares estimate is

obtained by iteratively computing equations (33) and (34) only. Then M* is redefined as P (k+l),

and equations (32), (35), and (36) are omitted.

Equation (33) displays the basic dynamics of the Kalman filter method. The new estimate of

the transfer-matrix T, formed after measurement, is equal to the old estimate plus a correction

term. The correction term is proportional to the error between the change in the measured vibration

state, Az, and the change in the vibration state predicted using the estimated value of the vibration,

T'A0. As shown by Kalman filter analysis (ref. 19), identification of the unknown transfer matrix

then occurs in the limit of a sufficient number of measurements, assuming that T and AZ are

stationary in the mean for as many measurements as are needed to define the expectation values

for r, M, and Q.

The Kalman filter is tuned by making good guesses for the r, M, and Q tuning parameters. If r

and M are chosen so that P becomes too large, the Kalman filter will become unstable and diverge

the identification process. If chosen such that P becomes too small, the identification process will
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becomesluggish. It is alsoprobablethat more than one combination of r and M may produce the

same identification performance. Similarly, if Q is chosen too small, the filter might not be able to

adjust to new conditions, and if chosen too large, may degrade steady-state performance.

Moreover, the highly coupled nature of equations (33) through (36) implies that the filter

performance will not be linear with regard to the selection of the tuning parameters.

3.3 Classic Least-Mean-Squares Filter Method

The least-mean-squares (LMS) filter method is a single-step identification technique which

resembles the Kalman filter, yet is considerably less complex in its implementation. The simplicity

of this algorithm derives from the manner in which it is formulated. The LMS filter was developed

by Widrow and Hoff (ref. 23) and Widrow (ref. 24), for multiple-input, single-output systems; it

was later applied to the multiple-input, multiple-output rotorcraft identification problem in
reference 25.

An obvious problem with the Kalman filter method is that the information needed to assign

initial values for r, M, and Q is usually unavailable. Although good estimates can sometimes be

experimentally determined for some applications, in many instances a lack of information requires

that the initial values be assigned by guessing. When the filter does not perform correctly (as it

usually will not at first), there is no good rationale for deciding how the tuning parameters should

be adjusted; that takes some trial and error.

In the LMS approach to system identification, this tuning difficulty is circumvented by

modeling the identification process in a more direct manner. Both the Kalman and LMS filters

require a starting estimate for the transfer matrix, T. However, whereas the Kalman filter forms an

update equation for T assuming knowledge of r, M, and Q, the LMS approach begins by assuming

that corrections to the estimate should be made proportional to the square of the identification

error. This identification process is referred to by Widrow (ref. 24) as the steepest descent

approach and is motivated by equation (33) of the Kalman filter. A useful mental image of the

steepest descent approach for a one-dimensional system is shown in figure 3. In that figure, the

estimate of the parameter x is plotted on the horizontal axis and the square of the corresponding

identification error e is plotted on the vertical axis to form a bucket-shaped curve about the value

of x having the minimum identification error. It can be seen that given the slope of the

identification error about any arbitrary starting value of x, the amount of correction to be made to

the estimate is proportional to the slope of the identification error and in the opposite direction, or

x(k + 1)= x(k)-KI_-_e21
(37)

This states that the correction to the estimate of x is proportional and opposite to the gradient of the

squared identification error, E2, with respect to x. The identification problem is now to find a good

value for K and the gradient. If K is too large, the identification process may become divergent,

and if too small, it may produce very slow convergence.
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Figure 3. One-dimensional view of LMS gradient.

Equation (37) may be rewritten in terms of the helicopter transfer-matrix identification problem

by forming an identification error for each row of the transfer matrix as

e i = [Az, (k) - T_(k)AO(k)] (38)

where, as before, T, is a row of the transfer matrix relating the change in the control inputs A0 to

the change in the ith vibration component output. (Henceforth the digital step indicator k will be

assumed and not explicitly written.) The square of the identification error is therefore,

ei z = eiei T (39)

e_2= (Az, - T_A0)(Az,- T,A0)T (40)

ei 2 _" mzi/_T -- mzim0TTi T - Tim0mz? at "rimomoTTi T (41)

Since Azi is a scalar, differentiation of equation (41) with respect to the transfer-matrix row

produces an expression for the error gradient

O3g2 _2(Az i_TiA0)&0 r
3ri (42)
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Substitutingequation(42) intoequation(37) andsubstitutingTi for x produces

T_(k + 1)= T_(k) + 2k,[z_z_(k) - Ti(k)A0(k)]A0(k) r (43)

(1 xj) = (1 xj) + (1)(1) [ (1)- (1 xj)(j x 1) ] (1 xi)

which is a remarkably computationally efficient algorithm for recursive identification of T i. This
can also be written in matrix form:

T(k + 1) = T(k) + 2K[Az(k) - T(k)A0(k)]A0r (k) (44)

(i xj) = (i x j) + (1)(i x i) [ (i x 1)- (ixj)(j x 1) ] (1 xl)

in which K is a diagonal matrix of the corresponding k coefficients. Equation (44) is the LMS

filter for system identification. It is like equation (33) of the Kalman filter, with the [r]_A0vP gains

term replaced with 2K_0 r. Unlike the usual Kalman filter simplifications that M and Q are

diagonal matrices, K is diagonal from its derivation. Compared to the full Kalman filter equations,

the LMS method is very elegant and computationally efficient. At the same time, however, it

should also be noted that the simplicity of the LMS algorithm (compared to the Kalman filter) is

achieved at the expense of not using any knowledge about the theoretical quality of the estimate. In

fact, no apriori knowledge was required in the formulation. This makes the LMS filter more

computationally robust than the Kalman filter, but does not take advantage of any good

information describing the stochastic nature of the system, if available.

To analyze the convergence properties of the LMS filter, the expected value of equation (44) is
taken as

Then, by defining

E[T(k + 1)] = ET(k) + 2KE[Az(k)A0(k) r ] - 2KET(k)A0(k)A0(k) T (45)

equation (45) may be rewritten

E[Az(k)A0(k)r ] = _a

E[Az(k)A0(k)r ] : _aaao

(46)

(47)

E[T(k + 1)] = ET(k) + 2K_,,..,, o - 2KET(k)_ao.A o (48)
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E[T(k + 1)] = ET(k)(I - 2K_ao.a0) + 2K_._o (49)

From equation (49) it can be seen that as long as the absolute values of the eigenvalues of

[I-2KO_0.Ae] are less than l, the algorithm is stable. Thus, the theoretical stability range for the k_

gain elements is

0 < ki < l/,;t_x

where _'m._xis the largest eigenvalue of the control information matrix _A0.,,e. Values of k_ near

1/_,max will cause rapid adaptation, but will also be more prone to tracking random noise

disturbances. Good values for the k_ are ones that result in convergence at a sufficiently rapid rate,

yet do not track noise signals too closely.

Although the above analysis provides some insight into the selection of elements for K, it

should be noted that _e._o is unknown for the general case of closed-loop identification. In order

to determine it, the control commands at all future time-steps would need to be known, which is, of

course, only possible for open-loop control. Therefore, in closed-loop, the selection of terms for K

is a matter of guessing. Nevertheless, this is a vast simplification over the Kalman filter method.

Whereas the Kalman filter method required selection of r, M, and Q, only K is required to

implement the LMS filter. This means the parameters in K can be adjusted without regard to the

effect on other tuning parameters, making the tuning task much less difficult.

Further tuning ease could be gained by assuming that the diagonal elements of K (the k_'s) are

all the same. This choice would make tuning very simple. However, the filter would become non-

optimal since k_ would be limited by the largest eigenvalue of _,_0.,_e.

3.4 Generalized Kalman Filter Method

In this section, an extension of the classic Kalman filter is presented which is referred to as the

generalized or multi-step Kalman filter method. This algorithm uses more than the most recent

measurement (and control) so that less reliance is placed on user-supplied tuning information,

which may be only poorly known.

In the derivation of the generalized Kalman filter method, it is assumed that the last n control

command and measurement vectors are available in computer memory. As was done for the

weighted-least-squares method, these controls and measurements are grouped into the • and Z

block matrices defined by equations (8) and (9). Then for each row of the parameter matrix to be

identified, T, and each row in the measurement matrix, Z_, the process and measurement noises are

defined in a manner directly analogous to that of the classic Kalman filter, as

E(Z, - T_O) = 0 (50)
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E[(Z,- T_O) T(Z,- T_O)] = R, (51)

E(T_ - T_*) = 0 (52)

E[(T_ - T_*)T(T_ - Ti *)]= M_ (53)

As for the classic version, these equations state that the means of the measurement and process

noises are zero and that the covariance matrices are known. However, R_ is an (n x n) matrix to

take into account n measurements in Z_ and n controls in O. The generalized Kalman filter estimate

of T_ is defined as the one that minimizes the quadratic identification performance index J_o,

J IO = (Zi - TiO)Ri -I (Zi - Ti(_)T + (Ti - Ti * Mi -I (Ti - Ti ,)T (54)

where R:' and M, t are the optimal weighting parameters. For a minimum of this performance

index to exist, the partial derivative of Jm with respect to the row estimate T i must be zero.

Applying this condition to equation (54) gives

0 = TiORi-Io T - ZiRi-IO T - T i * Mi -I + TiMi -I

From which it follows that

where P_ is defined as

Ti(Mi -I + ORi-IO T) = Ti * Mi -I + ZiRi-IO T

Ti(Mi-' + ORi-*O T) = Ti * (Mi-' + ORi-lO r)

+(Z i - Ti * O)Ri-IO T

T i = T_ * +(Z,- _ * O)R_-'OTP_

(1 x j) = (1 x j) + [ (1 x n)- (1 xj)(j x n)] In x n] (n xj)(j x j)

Pi = (Mi -I + ORi-IoT) -1

(55)

(56)

(57)

(58)

(j x j) = [(j x j) + (j x n)(n x n)(n x j) ]-1

Equations (57) and (58) define the generalized Kalman filter equations to be computed for each

row of the transfer matrix. To place these in a convenient matrix formulation requires the

assumption that the R_ and M_ matrices are the same for all rows of the transfer matrix. These are

the same assumptions made for tuning the classic Kalman filter. Though they may not be valid,
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they are necessary to make the tuning problem tractable. In matrix form, the equations for the

generalized Kalman filter are

T = T * +(Z- T * O)R-IOTP

(i x j) = (i x j) + [ (i x n)- (i xj)(j x n) ] (n x n) (n xj)(j x j)

(59)

P = (M -I + OR-JOT) "1 (60)

(j x j) = [(j x j) + (j x n) (n x n) (n x j) ]-1

where R and M are specified to be diagonal matrices having their respective diagonal terms equal

(i.e., R = rI,; M = mlj; where r and m are scalars). These equations bear strong resemblance to the

ordinary Kalman filter, but are fewer in number and do not recursively propagate the covariance

matrix. Unlike the ordinary Kalman filter method, the matrix inversion lemma is not used in the

derivation of the generalized version, because R is no longer a scalar.

Comparing equation (59) with equation (44), it is seen that the generalized Kalman filter is

computationally similar to the LMS algorithm. Whereas the LMS algorithm uses a gain based on

A0 r and K, the generalized Kalman filter bases the gain on R, M, and O r. From equations (59) and

(60), it is also seen that if R is chosen large, R 4 will be small to make the identification update rate

slow. If R is chosen very large (R _ very small), then an appropriately sized M t matrix is required

to prevent singularity in the calculation of P (eq. (60)). It can also be noted that if M_ were very

small, then the update gains would be essentially proportional only to O.

The multi-step approach of the generalized Kalman filter makes it less computationally

efficient. However, by possessing a "memory" of the n preceding measurements, the filter can

theoretically obtain improved accuracy and better noise rejection properties, even though using

less user-supplied tuning information.

3.5 Generalized Least-Mean-Squares Filter Method

Analogous to the generalization done for the Kalman filter, the generalized least-mean-squares

(LMS) filter method extends the classic LMS method to allow the identification to be based on

more than the most recent measurement and control input. The goal of the multi-step expansion is

to obtain a filter having improved accuracy and better noise rejection properties.

The generalization of the classic LMS filter is done by grouping the most recent sequence of

control and measurement vectors into the O and Z block matrices as defined by equations (8) and

(9). As for the classic LMS method, the generalized version assumes that the update equation for

transfer-matrix identification can be written in the steepest descent form of equation (37). The

generalization of the LMS filter is done by expressing the error gradient in multi-step format as
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t:, = (Z, - "rio) (61)

(1 x n) = (1 x n)- (1 xj)(j x n)

Then, the weighted-mean-square error is expressed as

ei 2 = eiW'ei T (62)

e,2 = (z, - T_O)W(Z, - "rio) T (63)

ei 2 ---_ ZiWZi T- ZiWOTTi T- TiOWZi T 4- TioWOTTi T (64)

where W is a diagonal weighting matrix which can be used to place greater weight on the most

recent measurements. The gradient of the square error with respect to T, is then found from

equation (64) as

O_ 2

-- = -2(Z i - TiO)WO T

31, (65)

Substituting this expression into equation (37) and substituting T_ for x produces

T,(k + l)= T_(k)+ 2k,[Zi(k)- T_(k)O(k)]O(k)T (66)

(1 x j) = (1 x j) + (1)(1)[(1 x n)- (1 xj)(j x n) l(n x n) (n x j)

or in matrix form

T(k + l) = T(k) + 2K[Z(k) - T(k)O(k)]O(k) T (67)

(i x j) = (i x j) + (1)(i x i) [ (i x n)- (i xj)(j x n) ] (n x n) (n x j)

Since the structure of the identification equations in equation (67) is the same as that of the

classic LMS filter, for a multi-step batch size of 1, the classic and generalized LMS filters are the

same. Therefore, the considerations governing the selection of K for stability and convergence are

the same as those presented for the classic LMS algorithm.
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4. COMPUTATIONAL EFFICIENCY

The computational burden of each method was analyzed by calculating the number of

additions, subtractions, multiplications, and inverse operations required by each method to identify

a transfer matrix of dimension (6 x 6). This information is presented in table 1, along with the time

required to implement each operation.

TABLE 1. Comparison of operations required to identify a (6 x 6) transfer matrix.

Type of
operation

Scalar add

WLSE Kalman LMS Generalized Generalized
filter filter Kalman LMS

filter filter

Computation
time* msec

n = 1 (6, 18)

1

2

6

33

7

7 (33, 91)

5

10

4

20

4 (20, 60)

10 (20, 42)

6 (20, 112)

6 (20, 118)

Scalar inverse 1

(6 x 1)(1 x 1) 2

(6 x 6) + (6 x 6) 3

(6x 1)- (6x 1) 1

(6 x n) - (6 x n)

(1 x 6)(6x 1) 1

(6 x 1)(1 x 6) 2

(6x6)(6xl) 2

(6 x 6)(6 x 6) 1 2

(6 x 6)(6 x n)

(6 x n)(n x 6) 2

(n x n)(n x 6) 1

(6 x n)(n x n)

170 1

*Approximate computation times are based on IBM
board run at 50 MHz.

Inverse (6 x 6)

1 2 1

I

l i

1 1

1 1

2 1

2 1

1

_86 architecture with a WE DSP32C processing

The time needed for each operation, of course, is dependent on the type of computer and

programming language used to implement the on-line identification. The types of machines

available range from personal computer lap-top configurations to dedicated array processor

systems having several microprocessors and several data paths to facilitate high-speed, pipe-lined

operations (see ref. 26 for further details). To be conservative, the author has decided to calculate

the computation time based on a personal computer hosting a WE DSP32C processing board

running at 50 MHz.

Figure 4 presents a graphical comparison of the computation times for each of the

identification methods. Here it is seen that the generalized LMS (GLMS) algorithm using a batch

size of 6 was still faster than the classic Kalman filter. The generalized Kalman filter (GKF) and

weighted-least-squares-error (WLSE) methods were the slowest. Their computation times,
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however,arestill sufficiently fast comparedto the averagehelicopterrotor-revolution period of
150to 200 msec.Therefore,thedesireto updatethetransfer-matrixparametersasoften asonce
every rotor revolution certainly does not eliminate any of the algorithms on the basis of
computationalspeed.
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Figure 4. Comparison of identification algorithm computation times based on IBM 386 architecture
with a WE DSP32C processing board running at 50 MHz.

5. SIMULATION PROGRAM

Identification performance was evaluated by modeling the rotorcraft as a quasi-steady, linear

system, in which the harmonics of vibration were related to the harmonics of blade-pitch control

by a linear transfer matrix. Though this type of modeling could not predict helicopter vibration in

units of g's, the purpose of simulating the system-identification algorithms was fully achieved.

A comprehensive helicopter dynamics analysis code for modeling the complexities of the

helicopter aerodynamic environment and airframe/rotor dynamics was not used to evaluate the

performance of the system-identification methods. The reason was that it was doubtful that a

sufficiently accurate wake model could be found to represent the high-frequency air loads and

resulting fuselage vibrations. In fact, the development of such a code would have been a more

formidable research problem than the original task of simulating the identification algorithms.

Therefore, for the limited purposes of this study, it was simply more efficient to generate the

helicopter transfer matrix artificially, using some ordinary matrix algebra. This simplification

allowed the performance of the identification algorithms to be evaluated quickly. The limitation of

this simplified approach, however, was that with the approach it was not possible to study the

influence of the helicopter dynamics on the identification performance.
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The simulation programconsistedof threebasicparts: (1) generationof the transfer-matrix

model and uncontrolled vibration (response metric), (2) computation of the control command, and

(3) simulation of the system-identification code (fig. 5). Coupling the identification and controller

formed an adaptive regulator for vibration control. The function of the controller was to either

excite the system dynamics for open-loop identification or to minimize the rotorcraft vibration to

permit study of closed-loop system identification. The transfer-matrix model was used to generate

the N/rev vibration coefficients as the sum of the uncontrolled vibration, the measurement noise,

and the vibration induced from the application of the HHC commands. Using the HHC inputs and

the plant-generated vibration outputs, the identification code was able to simulate the system-

identification methods. Many types of system-identification problems--for example, singularity of

the control covariance matrix, low signal-to-noise ratio, high measurement noise, high process

noise (unmodeled dynamics), and error in the tuning parameters---could be modeled using this
simulation.
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Figure 5. Outline of simulation program.

5.1 Transfer-Matrix Modeling

A transfer matrix was used to translate changes in the input HHC control vector 0 to changes in

the response measurement z. The transfer matrix had six columns, corresponding to six control

inputs, and from 1 to 12 rows, depending on the number of outputs being simulated. For example,
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this sizetransfermatrix wouldbeneededbetweena (6 x 1) inputcontrol vector (composedof the
sine andcosinecoefficientsof collective,lateral,andlongitudinal4/revswashplateexcitation)and
the responsevector composedof 2 -12 sine and cosinecoefficientsof measuredvibration. The
simulation programcould changeall theelementsof the transfermatrix T in order to study the
ability of system-identificationmethodsto trackchangesin thetransfermatrix.The propagationof
thetransfermatrix with simulationstep(k) wasprogrammedas

T(k) = To(k)+ G, [-l'_+j_]sin(_Tk)+ TN(k) (68)

with T O (k)=T A for k 100th step (69)

With this representation, the transfer-matrix elements could be held constant, varied continuously,

varied randomly, or changed in a step-wise manner.

The initial value of the transfer matrix, T o, was composed of randomly selected numbers

between 0 and 1. Such a matrix would generally be representative of a well-scaled actual

helicopter transfer matrix. By choosing the transfer-matrix values as random numbers between -1.0

and 1.0, a process-noise matrix (T N) of 10% could therefore be defined as a matrix of random

numbers between 0.1 and -0.1.

After simulation step 100, the T o matrix was allowed to remain constant or to change in a

prescribed manner. Most identification performance was evaluated for the condition of a single-

step change in the matrix at simulation step 100. Physically, this type of change might be

encountered when taking the helicopter rapidly from one constant flight speed to another. This

type of single-step change in the transfer matrix represented the easiest identification task to

analyze. The identification process would either succeed in re-identifying the new transfer matrix,

display convergence or stability problems, or simply be nonadaptive. For some simulation runs,

the transfer matrix was varied continuously after step I00. These variations are described in

section 7.1.

5.2 Vibration Generation

As mentioned in section 2, the harmonics of the measurement vector to be reduced consisted of

the sine and cosine coefficient harmonics of the vibration. This vector, denoted as z, was computed

for simulation step k as

z(k + 1) = [T(k)]0(k + 1) + z0(k + 1) + zs(k + 1) (70)

where T(k) represented the transfer matrix at step k, 0 was the control vector, zowas the

uncontrolled vibration, and z N represented the measurement noise. The z0 and z N quantities could

be zero, held constant, made random, or given some other prescribed variation. In most of the

simulated conditions, z0 was held constant to indicate a steady flight condition. Identification was

always first studied for the ideal case of no measurement noise (z N = null vector). For the

simulation cases showing good identification performance under ideal conditions, the simulations
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were repeatedwith variousamountsof measurementnoise.By changingzN,the signal-to-noise
ratio (i.e., z/z_)couldbeadjusted.

5.3 Controller Simulation

The controller generated the (6 x 1) 0-vector, representing the harmonics of the blade-pitch

control motion. For the case of open-loop identification, the controller generated random controls

to excite the plant dynamics. For the case of identification during closed-loop vibration control, the

controls were computed using a one-step deterministic control law of the type described in

reference 14. This controller sought to minimize the value of a quadratic performance index, Jc,

Jc = ZT(k)Wzz(k)+ 0T(k)Wo0(k) + A0T (k)WaoA 0(k) (71)

where Wz, W o,and WAo were definedas diagonal,positivedefinitematricesspecifyingthe relative

weighting given toward minimizing the vibration,blade-pitchcontrolamplitude, and blade-pitch

controlrate,respectively.By substitutingthe identities

z(k)= 'r[0(k)- 0(k - I)]+ z(k - l) (72)

a0(k)= 0(k)- 0(k- l) (73)

in equation (71), and then setting the partial derivative of Jc with respect to 0 equal to zero, the

deterministic control laws were produced. For the case of global transfer-matrix model

representation, the deterministic control law was given by

and for the local model by

0(k) = D[WAoO(k - 1)- TrWzz0 ] (74)

where for both cases

0(k)= D(TrWzT + WAo)0(k - I)- D(T'rwz)z(k - I) (75)

D = (TTW_T + WA0 + W0 )-' (76)

Note that when using the global model, the identified uncontrolled vibration was used, whereas

when using the local model, the measured vibration was used.

For closed-loop identifcation, the controller was usually tuned to balance the trade-off between

minimizing vibration, control rate, and absolute control by specifying the weighting matrix

diagonal values to be Wz = 1.0, WA0 = 0.05, and W 0 = 0.0. These weightings were found by trial
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and error to produce good controller performance.With thesesettings, the controller would
generallyconvergerapidly to the propervibration control settingwithout manifestingunstable
behavior.On thebasisof resultsnot presentedherein,it was foundthat varying the weightingon
W,,0andW0from 0 to 0.20did notchangethebasicvibrationcontrolor identificationconvergence

patternsignificantly. Valuesof WA0and We from 0.20 to 0.50 were found to provide too much

damping on the control action and to causepoor controller performance,though they did not
generallyaffect identificationperformance.

5.4 Identification Algorithms

The system-identification equations presented in section 3 were used to form the identifier

modules which derived an estimate of the transfer matrix Tio at each step of the simulation.

Identification performance was then measured by the error between the true plant transfer matrix

and the identified transfer matrix. Since the system transfer matrix could range in dimension from

(1 x 6) to (12 x 6), it was necessary to create an identification performance comparison index. The

index chosen was the sum of the absolute value of the identification errors for all elements of the

matrix divided by the number of elements N.r in the matrix,

JID =

1-12 6

Y_ ,_ ITIo(i,j)-T(i,J)]
i=l j=l

Nr (77)

This index made possible a graphical presentation of the identification error as a function of the

simulation step. However, it masked the variation of the individual matrix elements and also

obscured some details of the identification process. A subtle point of this index is that it is

necessary to recognize that a JID = 0.25 implies a 50% identification error in the transfer-matrix

elements. The reason for this is that with the elements of T chosen as random numbers between -1

and +1, random errors in T ranging between -0.5 and 0.5 would have an absolute value range of

0.0 to 0.5, with the average error being 0.25.

6. OPEN-LOOP IDENTIFICATION OF THE LOCAL MODEL

Open-loop identification of the local transfer-matrix model was studied by having the

controller generate random input commands to excite the system dynamics. This represented the

ideal case for system identification, because the level of excitation did not diminish as the

simulation progressed. Identification performance with and without measurement noise was

compared for all of the identification methods. For all cases presented below, the initial estimate of

the transfer matrix was specified without any starting error.

After simulation step 100, the system transfer matrix was changed to a new matrix in order to

determine how fast each identification method could re-identify the new transfer matrix. The

transfer matrix used after step 100 was generated as the sum of the first transfer matrix plus a

matrix of random numbers between -0.5 and +0.5. Since the original transfer matrix was composed
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of numbersbetween-1.0 and +1.0, this was a change of about 50% from the original transfer

matrix. The transfer matrices before and after the change at simulation step 100 are presented in
table 2.

TABLE 2. Comparison (6 x 6) transfer matrix before and after simulation step 100.

Before step 100

--1.00 0.67 -0.64 0.02 0.12 0.00-

-1.00 0.26 0.70 0.14 0.70 --0.57

-0.78 -0.26 -0.29 0.22 0.61 0.39

0.53 -0.60 -0.33 0.09 0.98 0.83

-0.64 -0.93 -0.88 -0.39 -0.33 0.70

0.81 0.97 0.37 -0.94 0.23 0.75

--0.75

-0.82

-1.01

0.38

-0.91

0.67

After step 100

1.17 -0.40 -0.35 -0.18 -0.20-

0.13 0.33 0.48 0.41 -0.34

-0.53 -0.66 -0.15 0.59 0.86

-0.46 -0.07 0.37 0.68 0.43

-0.60 -0.51 -0.42 -0.56 1.02

1.34 0.16 -0.49 -0.19 0.70

Identification performance was then judged by the amount of identification error remaining

after simulation step 100. Without identification, the identification error remaining after step 100

would be constant (fig. 6). (The shading in fig. 6 under the identification error is only for visual

effect and has no special significance.) Identification plots resembling that of figure 6 would

therefore be indicative of little or no identification improvement. With good identification, the

identification error would be brought back to zero.

Note. The simulation results presented in figures 6-99 appear at the end of the report.

6.1 Open-Loop Weighted-Least-Squares-Error Simulation

Least-squares identification was studied using a (6 × 6) transfer matrix. A minimum batch size

of n = 6 was therefore required for the least-squares identification. Figure 7 shows that for a batch

size of 6, no measurement noise, and W set equal to a (6 x 6) identity matrix, the identification of

the new transfer matrix occurred within six steps after the change in T at simulation step 100.

However, with 10% measurement noise, the identification process became very erratic (fig. 8(a)).

Some of the identification-error peaks went substantially beyond the plot border. Figure 8(b)

shows that by increasing the batch size to 8, the peaks of high identification error were attenuated.

As the batch size was made larger still, the identification error was further reduced. Figure 8 shows

the identification error using batch sizes of I0 (fig. 8(c)), 12 (fig. 8(d)), and 24 (fig. 8(e)). The

steady-state identification error was clearly lowest for batch size 24 (fig. 8(e)), the batch size that

also required the longest computation time. Since each measurement had some measurement error,

the only way to lower the identification error to zero would have been to use an infinitely large

batch size. Figures 9(a) and 9(b) show that the effect of higher measurement noise was to raise the

steady-state identification error.

The effect of using exponential weighting was to increase the rate of convergence. Figure 10

shows the identification error (for batch size 24) with 7 set equal to 1.0 (i.e., no relative weighting,

fig. 10(a)); to 0.9 (fig. 10(b)); to 0.8 (fig. 10(c)); and to 0.7 (fig. 10(d)). Although there was an

improvement in the identification convergence speed after the disturbance at simulation step 100,
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thesteady-stateidentificationerrorwashigher.It wasconcludedthat abatchsizeof about 12with
no exponential weighting was comparableto using a batch size of 24 with ), equal to 0.7.
Consideringthat thecomputationalburdenincreasedby morethanthesquareof thebatchsize(see
eq.(15)), thechoice of using abatchsizeof 12with noexponentialweighting is computationally
preferable.

Figures1l(a) and 1l(b) showthatincreasingthedimensionof thetransfermatrix from (6 x 6)
to (12 x 6) had little effect on the identification performance. This was expected, since
theoreticallyonly thecolumndimensionof T relativeto thebatchsizeis important.In practice,for
goodidentification performance,thebatchsizemustbeabout 1.5to 2 timesthecolumndimension
of the transfer matrix. The numberof rows in the transfermatrix did not influence the overall
identificationperformance.

6.2 Open-Loop Kalman Filter Simulation

The ordinary Kalman filter was simulated for the same test condition as the weighted-least-

squares-error (WLSE) method. As discussed in section 3, the Kalman filter required that starting

estimates for the transfer matrix, T 0, and for the r, M, and Q tuning parameters be selected. In

actual application, a good starting estimate of T o could be found using the least squares method.

For the present investigation, the transfer-matrix estimate was initialized to the true transfer matrix

for simplicity. (This assumption was later removed, as explained in sec. 6.6 below.) Ignoring (for

the moment) the possibility of P going to zero, Q was set equal to zero to simplify the tuning task.

In this way, tuning was reduced to the selection of two parameters, r and M.

In the first simulation runs, a parametric variation of r and M was studied for the case of no

measurement noise. Figures 12-15 show results for various values of r and with the diagonal

elements of M having values of 0.1, 1.0, 10.0, and 100.0. The results for r = 0.1 are shown in

figure 12; for r = 1.0 in figure 13; for r = 10.0 in figure 14; and for r = 100.0 in figure 15. The

results of these 16 cases displayed fairly similar behavior. In most cases, the identification error

was reduced, though sometimes somewhat slowly. This indicated that precise specification of r and

M was not very important. Table 3 presents the identification error at step 180 for each of the

identification trials shown in figures 12-15. From this table, it was observed that runs made with

the same M/r ratio had the same identification error. Table 4 shows that increasing the M/r ratio

improved the identification performance until a ratio of about 1 or 10 was reached.

TABLE 3. Classic Kalman filter open-loop identification error at

step 180 for no measurement noise.
M

r 0.1 1.0 10.0 100.0

0.1

1.0

10.0

100.0

0.1625

0.1719

0.2191

0.2691

0.1614

0.1625

0.1719

0.2191

0.1613

0.1614

0.1625

0.1719

0.1613

0.1613

0.1614

0.1625
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TABLE 4. ClassicKalmanfilter open-loop identification error at

step 180 as a function of the M/r ratio.

M/r Identification

error at step
180

0.001 0.2691

0.01 0.2191

0.1 0.1719

1 O. 1625

10 0.1614

100 0.1613

1,000 0.1613

1,000,000 0.1611

The identification performance of the Kalman filter did not appear to be as good as that of the

least-squares method. Further investigation determined that the identification was poorer because

the P matrix was approaching zero as the simulation progressed. By raising the value of the Q

matrix from zero, considerable identification improvement was obtained. (Recall that Q serves to

keep P from ever going to zero.) Using M = 10.0 * 16 and r = 1.0, even the smallest value of Q

simulated (0.01) improved the identification convergence time (fig. 16). As Q was made larger, the

identification error continued to be further reduced, until a value for the Q diagonal elements of

about 10 was reached. For values of Q higher than 10, the identification performance was not

further improved.

The identification performance of the open-loop Kalman filter with 10% measurement noise

was evaluated using the filter tuning M = 10.0 * 16, r = 1.0, and Q = 10.0 * 16. Figure 17(a) shows

that the addition of measurement noise had an effect similar to the that seen for weighted least

squares, and that the convergence to the steady-state error after the disturbance at simulation step

100 was fairly fast. In fact, it was just as good as the least-squares approach. Figure 17(b) shows

that setting M = 1.0 * 16and r = 0.1 with Q left at 10.0 did not change the identification

performance, because the M/r ratio remained the same.

6.3 Open-Loop Least.Mean-Squares Filter Simulation

Since the least-mean-squares (LMS) algorithm had only one tuning parameter, K s, tuning the

filter required no strategy like the kind used to tune the Kalman filter (e.g., keeping Q zero while

adjusting the M/r ratio). Figure 18 shows the identification behavior with the K s matrix diagonal

elements varied from 0.001 to 0.5, for the case of no measurement noise. When K s was very small,

very little re-identification was observed after step 100 (fig. 18(a)). As K s was made larger, the

identification improved until K s was made too large, and the identification process became

unstable (fig. 18(e)). Figure 18(d) shows that the K s diagonals equal to about 0.3 produced the best

identification performance for the condition of no measurement noise.
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Theadditionof 10%measurementnoiseraisedthebaselinelevel of identificationerror,but did
not prevent convergenceto the correct transfer matrix to within the bounds allowed by the
measurementnoise.As shownin figure 19,re-identificationof thetransfermatrix occurredwithin
about20 simulationsteps.

6.4 Open-Loop Generalized Kalman Filter Simulation

The generalized Kalman filter required the specification of the R * I, and M * 16 tuning

matrices. Although specification of Q was not required, the calculation batch size n needed to be

chosen. Of course, as the batch size was increased, so was the computation time.

In the simulations performed for the case of no measurement noise and a batch size n = 1, it

was seen that the ratio of M/R was the primary factor governing identification performance. Figure

20 presents the identification error for several M/R ratios. For small values of M/R, virtually no

identification took place after simulation step 100 (fig. 20(a)). As the M/R ratio was increased, the

identification performance improved until the ratio approached a value of about 10 (fig. 20(d)).

Because higher values did not continue to improve identification performance, an M/R ratio of 10

was judged to be good.

Using a value of 10 for the M/R ratio, the identification error was reduced much faster as the

batch size was increased (fig. 21). Even a batch size of 2 made a noticeable improvement. A batch

size of 8 increased the initial identification error slightly, but reduced the identification error

convergence time greatly. With a batch size of 1, identification convergence did not occur within

200 simulation steps (fig. 21(a)); whereas for a batch size of 8, only 13 simulation steps were

required (fig. 21 (d)). A batch size of about 4 seemed to provide the best compromise between

minimizing the identification error produced at simulation step 100 and maximizing the

identification convergence rate after step 100.

It was anticipated that this multi-step method would also improve identification for the case of

10% measurement noise. Although this proved to be true, re-tuning of the M/R ratio was required.

Figure 22 shows that the identification performance did not improve as the batch size was made

larger if an M/R ratio of 10 was used. Figure 23 shows the identification performance using a

batch size of 4 with M/R ratios of 100, 10, 1, 0.1, and 0.01. These plots show that by decreasing

the M/R ratio, the performance of the generalized Kalman filter was much improved. An M/R

ratio of about 0.1 appeared to provide the best identification performance for a batch size of 4 and

10% measurement noise (fig. 23(d)). Smaller M/R ratios continued to decrease the steady-state

error, but lengthened the convergence time.

6.5 Open-Loop Generalized Least-Mean-Squares Filter Simulation

Since the generalized and classic least-mean-squares (LMS) filters were the same algorithm for

a batch size of 1, simulation of the generalized LMS method was done primarily using batch sizes

greater than 1. Figure 24 shows that for the case of no measurement noise, increasing the batch

size to 2 improved the identification convergence time slightly. Although not shown in figure 24,

increasing the batch size to 4 with K s = 0.3 made the identification very unstable and quickly

aborted the simulation program. Figure 25 shows that by decreasing K s , good identification
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performancecould be regainedwith a batchsize of 4. Figure 25(a) shows that the identification

error became very large after simulation step 130 for K s = 0.2. (Fig. 25(a) does not show the exact

magnitude of the error, but any error greater than 1 is not good.) Figure 25(b) shows that excellent

identification performance was obtained by decreasing K s to O. 15. This value of K s also produced

stable identification for batch sizes of 6 and 8 for the case of no measurement noise (fig. 26).

When 10% measurement noise was introduced into the simulation, however, K s needed to be

made smaller to maintain identification stability. Figure 27(a) shows that for a multi-step batch

size of 6 and K s = 0.15, the identification error tended to be large at times, and the convergence

was unstable, as noted by the large spikes in the identification error near the end of the record.

Figure 27(b) shows that good identification performance could be regained by decreasing K s to

0.05. Figure 28 shows that further reduction in K s allowed identification stability to be maintained

as the multi-step batch size was made larger.

Figure 28 also shows that the steady-state identification error was made smaller by increasing

the batch size. However, since larger batch sizes also required smaller values of K s for stability,

the identification convergence time was also increased. For example, in figure 28(e) it is shown

that the identification error at the end of the run was the smallest, but the decay in the identification

error after step 100 was the slowest. Overall, a K s of 0.1 with a batch size of 4 seemed to provide

the best compromise between identification convergence speed and steady-state identification

accuracy (fig. 28(c)). A batch size of 1 with K s = 0.3 also produced good identification

performance (fig. 28(a)).

6.6 Effect of Transfer-Matrix Initial Conditions

In the simulations described above, the initial estimate of the transfer matrix was initialized to

the true system transfer matrix so that the identification could start with zero identification error.

Of course, this was unimportant for the least-squares method, since its formulation did not rely on

a current estimate of the transfer matrix to form a new estimate. The other methods, however, used

a starting transfer-matrix estimate in their recursive formulations.

Figure 29 compares the identification error of the four recursive methods for the case of 10%

measurement noise and starting from an initial T matrix of all l's. The tuning values used for r, R,

M, Q, and K s were the best values found for each method above. Each of the methods was seen to

converge without difficulty after about 50 simulation steps. It was also observed that the

generalized methods using a batch size of 4 or 6 were able to perform the initial identification

more accurately. Since the identification of the true transfer matrix from a starting matrix of all 1 's

was sufficiently general, any filter initialized with an estimate of T found by the least-squares

method should perform even better. Other simulation data (not presented here) showed that

different values of r, R, M, Q, and K s did not change the basic conclusion that the initial

conditions on the transfer matrix were relatively unimportant for open-loop identification

purposes.
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7. CLOSED-LOOP IDENTIFICATION OF THE LOCAL MODEL

It is generally believed that closed-loop and open-loop system identification are fundamentally

the same, but they are not. During open-loop identification, random excitation of the system

insures that the system output will always be large enough to produce a good signal-to-noise ratio.

In closed-loop identification, however, the control commands are chosen to perform some useful

purpose like controlling helicopter vibration as in the present application. As the controller reduces

the vibration, the point may be reached where the noise begins to dominate the residual measured

vibration signal. At the same time, as the controller approaches a steady-state optimal control

solution, the control commands from one step to the next will not be very different since they are

nearly optimal. In this situation, the small changes in the command signal are real, but the changes

in the measured vibration are mostly a result of measurement noise. The system-identification

algorithm may therefore erroneously attempt to identify a matrix relating the small changes in

control to the random changes in the measurement signal. This matrix is, of course, the null matrix.

The results discussed in this section are for identification of the local-system model in closed-

loop operation. Just as for the case of open-loop identification, simulation of closed-loop
identification was initially studied by abruptly changing the transfer-matrix elements at simulation

step 100. The new matrix was again formed by adding a matrix of random numbers between -0.5

and +0.5 (50% random noise) to the transfer matrix. This simulation studied how effectively the

identification algorithms could accommodate a mild, one-time change in the system transfer matrix

during closed-loop operation. After tuning each of the methods for the one-time change, the five

identification algorithms were examined to see how well they could track a continuously changing

system transfer matrix.

During the simulation, the performance of the closed-loop regulator was also studied. Because
the controller used the identified transfer matrix to compute the vibration controls, the level of

vibration suppression achieved also served as an indirect indicator of system-identification

performance. However, several times the controller masked or made up for identification errors.

Occasionally, it was observed that identified matrices having the same overall level of

identification error did not always control vibration with equal effectiveness. Whereas one matrix

might be identified well enough for use in a control law, the other might produce unstable

behavior. A relevant analogy is two people lost in the wilderness who need to travel 8 miles west

to find their desired destination. The person saying "Let's go one mile west" gives better advice

than a person saying "Let's go one mile north." Even though both will be in error by about 7 miles,

successive approximation will enable the one who knows to go west to find the destination after a

number of iterations. In the same way, the identified system transfer matrices also point the way to

minimize the system vibration, though not always in one step. Transfer matrices that allow the

controller to iteratively suppress the vibration are the ones having the right relative proportion

between the matrix elements. These matrices ultimately work much better for vibration control.

The performance of the vibration controller was calculated by comparing the levels of

controlled versus uncontrolled vibration. This was possible in simulation, since both the

uncontrolled and controlled vibration levels were always known. However, because plotting all of
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thevibration channelsversussimulationstepwould havepresentedacomplexpicture,a vibration
indexwasdefinedas

and

Jz0 =

1-12

i Zo(i)a
i=1

I-12 (78)

1-12

IZ(i) l

Jz = i=l
1 - 12 (79)

where Jz0 represented the uncontrolled vibration index, and Jz represented the controlled vibration

index. These scalar quantities could be easily plotted and compared, just like the index used to plot

the mean identification error. By plotting these values along with the system identification error, it

could be seen how the identification error influenced closed-loop control performance.

Figure 30 presents the identification error and vibration indices for the case of control without

identification. The level of vibration for no control was chosen to be 1 for all six channels (hence

the sum squares average was 1 also) and is indicated by the dashed line. The vibration

reduction/increase with control applied is indicated by the cross-hatched area under the solid line.

The cross-hatched shading was used to avoid confusion with the identification-error solid shading.

Before simulation step 100, the uncontrolled vibration level was reduced very smoothly because

the transfer matrix was initialized without error. In fact, the vibration would have gone to zero in

one step had not a relaxation constant of 10% been used to slow the control action. The relaxation

was used to improve controller stability. (Alternatively, values for W e and W,, e could have been

selected as well, but using a relaxation constant was computationally more efficient because it

replaces several matrix multiplications with a single vector-scalar multiplication, namely 0* = k0.

See how equations (74)-(76) simplify with W e and W,_ e removed.) After step 100, the transfer-

matrix elements were given a step-change identical to the one given for the open-loop

identification runs. As can be seen, the uncontrolled vibration level became very large as the

controller diverged. The divergence occurred because the transfer matrix used by the controller

was not updated after the change at simulation step 100. For this reason, the controller calculated
control values that made the uncontrolled vibration worse rather than better.

7.1 Closed-Loop Weighted-Least-Squares-Error Identification: Local Model

Simulation of the closed-loop weighted-least-squares-error (WLSE) identification was done

using a 6 x 6 local transfer-matrix model. A batch size of 8 with no exponential weighting was

used, since that configuration showed good open-loop identification performance. However, the

identification performance was unstable, even for the case of no measurement noise (fig. 31). In

fact, after step 170, the identified transfer matrix became the null matrix. Surprisingly, the

vibration control was very good. This warrants special discussion.
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It seemsparadoxicalthat thevibration couldbeso effectivelycontrolledduringperiodswhen
the transfermatrix wassopoorly identified.The reasonwasthat thecontroller found the optimal
vibration-control input beforethe transfermatrix becamecorrupted.Shortlyafter thenew transfer
matrix was correctly identified at about step 110, the controller found the correct steady-state
control settingsto reducethe vibration. However,asthe control-vectorelementsbecamenearly
optimal, the changesto it becamevery small for successivesimulation stepsand the control-
covariancematrix, OWOT(seeeq. (14))becamesingular.When this happened,the least-squares
identification method diverged. Yet, because the controller produced its control updates
proportionalto Z(k.i)(seeeq. (75)), andbecauseZ_k._)wasnearzero,the controllerdid not change
the control settingseven though T wasgreatly in error. For this reason,good vibration-control
performance was maintained even when the identified transfer matrix becameinaccurately
defined. Most likely, if the vibration amplitudesand phaseshadbeenchangedabruptly at about
step170,thecontrollerwould havealsodiverged.

The key to improving the identification performanceof the least-squaresmethodis to prevent
the control-covariancematrix, OWOT,from becomingsingular.Two methodsof achieving this
were evaluated:(1) to skip the identification and moving-block sequenceupdatewheneverthe
vibration fell below a predefinedlevel and(2) to addanopen-loopperturbationcomponentto the
control vector.

Figure32 showstheresulting identificationandcontrol performancefor the samecaseasthat
shownin figure 3l, exceptthat a softwareswitchwasaddedto allow theidentification codeand
moving-blockprocessto be skippedwheneverthe vibration level wasbelowan indexof 0.05 (or
5%of thebaselineuncontrolledvibration level). This seemedto work very well at first. However,
skippingtheidentification cyclewheneverthe vibration level wasbelow0.05did not work for the
caseof 10% measurementnoise(fig. 33). Sincethe vibration level wasalways above0.05, the
softwareswitchwasrenderedineffectiveasameansof stabilizingtheidentificationprocess.(Note
thatbecausetheidentification errorwasgreaterthan l, it exceededtheplot boundaries.)As shown
in figure 34, increasingthe switchingvalueto 0.20did not eliminatetheproblem.In fact, for that
case,the 10%error in Ztk.i)was evidently enoughto diverge the controller solution, and both
identificationandcontrollerperformancesweredegraded.Also of notein figure 34werethepoints
of constantidentification error nearthe0.50markfor periodswhentheidentificationroutine was
bypassed.Examinationof the transfermatrix nearthe 0.50 markrevealeda matrix of zeros.This
wasthe expectedvalueof the transfermatrix relatingsmallerchangesin thedeterministiccontrol
solutionto randommeasurementnoise.

More simulation runs were conductedto refine the switching points for other amountsof
measurementnoise.Figures35(a)and35(b) showfor 1%and3%measurementnoisethatskipping
the identification for a vibration threshold of 0.15 made the identification and controller
performancevery acceptable.At 5% measurementnoise,the identificationand vibration control
werestill fairly good,but werebeginningto degrade(fig. 35(c)).For 7.5%measurementnoise,the
identificationperformancewasseriouslydegraded(fig. 35(d)).As wasalreadyshownin figure 34,
for 10%measurementnoise,both identificationandcontrollerperformancewerepoor.Therefore,
asameansof improving identification,themethodof skippingtheidentificationcodefor vibration
levelsbelowa certainsetpoint wasnot veryeffective.
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The secondmethod (of adding a perturbationsignal to improveidentification performance)
wasalsofound to beunsuccessfulin improvingtheoverall identificationperformance.For thecase
of 10%measurementnoise,adding±10% perturbationsignalto thecontrol vectordid not improve
theidentification performance,but did makethe controllerperformancebetter (fig. 36(a)).Figure
36(b) showsthatincreasingtheamountof randomperturbationto ±50 % madeboth identification
andcontrollerperformancemuchworse.

However,increasingthebatchsizefrom 8 to 24considerablyimprovedboth identificationand
controller performancefor the 10% measurement-noisecase(fig. 37). Figure 37(a) shows that
fairly good identification performancewas obtainedusing a batch sizeof 24, a zero-vibration
definition of 0.20,andrandomforcing perturbationof 10%.Thecontrollerperformancewasalso
good. Figure 37(b) shows that reducing the zero-vibration definition to 0.10 degradedthe
identificationaccuracy,but did improvethecontrollerperformancea little. Figure37(c) showsthat
decreasingtherandomforcing to 0.05furtherincreasedtheidentificationerror.

Lastly, theeffectof removingthezero-vibrationdefinition andusingonly randomperturbation
to improve the identificationperformancewasstudiedusinga batchsizeof 18.Figure 38 shows
the identification and controller performancefor randomforcing of 30% (fig. 38(a)), 60% (fig.
38(b)), and 100%(fig. 38(c)) of thebaselinecontrol. It canbeseenthat asthe amountof random
forcing was increased,the steady-stateidentification error was reduced,but the steady-state
controllerperformancewasseverelydegraded.Moreover,in comparingthesefigures with figure
37(a), it can be seenthat removing the zero-vibration definition made the identification and
controllerperformanceworseoverall, regardlessof theamountof randomforcing.

Sincethe least-squaresmethodproducedthe lowestidentificationerrorsusing abatchsizeof
24, a zero-vibration definition of 0.20, and a random forcing perturbation of 10%, that
configuration was testedfor identification of a continuouslyvaried transfermatrix. In this test,
sinusoidalvariationof the transfermatrix from onematrix to anotherbeganafter simulationstep
100andwasconductedaccordingto thefollowing schedule.

SimulationSteps
0-100

101-300

301-500

501-700

701-900

901-1000

SystemTransferMatrix

T=T o

T = T O+ 0.25 *(TR^NDOM)*sin(k X/500)

T = T o - 0.50 *(TRANDOM)*sin(k X/500)

T = To+ 0.75 *(TRANt_M)*sin(k 1t/500)

T = T O - 1.00 *(T_ANDOM)*sin(k n/500)

T=T o

In the above schedule, TRANDOMwas a matrix of random numbers between -1 and + 1. Therefore,

the magnitudes of the disturbances were 25%, 50%, 75%, and 100% from the baseline transfer

matrix. Note also that the sign of the disturbance changed every 200 simulation steps to make the

identification problem more challenging. Figure 39 shows the identification-error index produced

by this variation for the case of no system identification. It should be noted that although the
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absolutevalueof the identificationerror is seento havediscontinuitiesof only 0.25 (or 25% of the
baselinematrix)--because the sign of the disturbancechangedevery200 simulation stepsmthe
actualmagnitudeof thechangewasmuchlarger.For example,note from the scheduleabovethat
at simulation step301, the transfermatrix wasactuallydisturbedby 0.75 [0.25- (-0.5)]. Had the
identification metric beenable to show both positive and negativeerrors, the plot in figure 39
wouldhaveshownthe secondandfourth 1/4cosinewavesasbeingnegative.

Figure 40 showsthe identificationerror andvibration producedby the least-squaresmethod
usinga batchsizeof 24. Although the vibration control wasnot too bad,the identification error
washigherthan in thecaseof no identification.Exponentialweightingwasalsosimulated,but this
did not improve the identification performance.The poor identification performanceprobably
resultedfrom skipping theidentificationcycleduringtimesof low vibration, therebyallowing the
transfermatrix to changetoo muchbetweenidentificationupdates.

7.2 Closed-Loop Kaiman Filter Identification: Local Model

Since the classic Kalman filter appeared to work best in open-loop for the tuning selection of

r = 1, M = 10, (or any M/r ratio of 10) and Q = 10, this tuning was initially selected for the closed-

loop simulations. Figure 41 (a) presents the baseline case of no noise and with the same 50% step-

change in the transfer-matrix values at simulation step 100 as was done previously for the closed-

loop, weighted-least-squares simulation. The vibration was suppressed in one iteration at the start
of the simulation, since the initial estimate of the identified transfer matrix had no error. After

simulation step 100, the controller initially made the vibration worse than the uncontrolled state,

but then quickly regained control after a few simulation steps. During this period, the Kalman filter

began to slowly correct the identified transfer matrix, as seen by the decrease in the identification

error beginning after simulation step 100 (fig. 41(a)). However, before the identification process

progressed very far, the deterministic controller achieved a nearly zero controlled vibration level.

As the vibration neared zero, the identification process was effectively shut down. Equation (33)

shows that as the change in control and the change in vibration both approach zero, the

identification updates become very small. Figure 41(b) shows that the introduction of a 10%

probing signal to the control vector allowed the identification process to continue to reduce the

identification error after simulation step 100.

The introduction of 10% measurement noise caused the identification process to become

divergent (fig. 42). The divergence occurred because the Kalman filter was identifying the local

transfer matrix relating the changes in (mostly) measurement noise to the small changes in

deterministic control. Nevertheless, the vibration controller produced surprisingly good control

considering the high amount of identification error. Once again, having successfully arrived very

close to the optimal control setting, the deterministic controller did not make large changes to the
control vector because the measured vibration was small. Thus, the vibration remained well

controlled, even though the transfer-matrix identification error was large.

The identification divergence problem caused by the introduction of measurement noise was

remedied in two ways. First, it was found that adding a 10% probing signal to the control input

stabilized the identification process and eliminated almost all growth in the identification error
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(fig. 43). The probingsignal stabilizedtheidentificationprocessby increasingthe signal-to-noise
ratio.The vibrationcontrol,however,wasmadeslightly worsethanwithout probing.

The secondmethodof stabilizing the identification processin the presenceof measurement
noisewas to makeadjustmentsin the r, M, andQ tuning parameters.After anotherparametric
variationsimilar to that performedfor the open-looptuning,it wasfound that increasingthe r/M
ratio madethe closed-loopKalmanfilter identification morestable.Without measurementnoise,
settingr = 100andM -- 16 seemed to almost halt the identification process. As shown in figure 44,

the identification error after simulation step 100 looked very much like the plot for no

identification. However, whereas the vibration could not be controlled at all for the case of no

identification (fig. 30), the vibration control shown in figure 44 was excellent. Therefore, even

though convergence to the correct transfer matrix after step 100 was very slight, because the

vibration control was so effective, it was concluded that the Kalman filter made important changes

to the identified transfer matrix which allowed the controller to successfully iterate to the optimal

control. The identification scheme, though not converged, appeared to alter the ratio of the

transfer-matrix elements so that the deterministic controller could iteratively step toward the

optimal control. Once this optimal control was found, however, the identification process halted.

For the case of 10% measurement noise, the (r = 100, M = 16 ) tuning produced an

identification error that did not grow with 10% measurement noise, but instead was very constant

after the disturbance at step 100 (fig. 45). The vibration control was also more stable compared

with that shown in figure 43.

Figure 46(a) shows that the addition of 10% control probing did not lessen the identification

errors by a noticeable amount. Figure 46(b) shows that a very slight reduction in identification

error was achieved by simulation step 200 by using 30% control probing, but that the steady-state

vibration control was much worse. For 100% and 200% control probing, figures 46(c) and 46(d),

show that the identification error could be driven lower. However, in those cases, all vibration

control was forgone in order to produce large enough perturbations in the control vector to yield

better system identification.

The 100% control probing case was then repeated using the previous (r = 1, M = 10 * 16)

tuning which had produced the best system identification in open-loop. The measurement noise

level was 10% as before. The identification error was reduced much faster than with the (r = 100,

M = I6) tuning (fig. 47). Comparing figures 47 and 46(c) it was observed that before the transfer-

matrix change at step I00, figure 47 showed higher identification error than did figure 46(c). Yet

after the change at step 100, figure 47 showed less identification error. The reason was that the

tuning used for figure 47 effectively gave the Kalman filter a higher identification gain. So,

although it was more adaptive in the sense of being better able to re-identify the new transfer

matrix, it was also more sensitive to the spurious effects of measurement noise.

The classic Kalman filter identification performance was also tested for the case of continuous

transfer-matrix variation (see sec. 7.1). With r = 1 and M = 10 * I6, the identification error was

higher than the baseline (no identification) case, but the vibration control was good (fig. 48(a)). On

the other hand, with r =100 and M = 16, the identification error was lower than the baseline, but the

vibration control was not as good (fig. 48(b)). The latter tuning seemed to provide better
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identification, but also made the control more erratic. The former tuning produceda higher
Kalmanfilter identification "gain" (or r'_A0"rpof eq. (33); with P computedfrom eq.(32)), which
apparentlydrovetheidentificationprocessunstable.

7.3 Closed-Loop Least-Mean-Squares Filter Identification: Local Model

The diagonal elements of K s were set equal to 0.30 for the LMS filter, since that tuning worked

well in open-loop identification. For the ideal case of no measurement noise, the identification

process was convergent after the transfer matrix was changed at simulation step 100 (fig. 49).

However, the identification process was effectively turned off when the uncontrolled vibration

became small. Similar to the Kalman filter, equation (44) shows that the identification updates

become very small as the changes in the control vector, A0, become small. The identification error

continued to be reduced only until the vibration approached zero. When that occurred (at about

step 130), the changes in the control vector became small, and the identification process stopped.

For this reason, the identification error remained nearly constant after the vibration was reduced to

zero.

The addition of 10% measurement noise produced little change in the LMS identification

performance (fig. 50). Figure 51 shows the effect of changing the K s gains for the case of 10%

measurement noise. Figure 51(a) shows that reducing the gain to 0.1 produced slightly better

identification performance. The higher identification error shown in figure 5 l(b) resulted from

using too high a value for the K s gain elements (K s = 0.5 * 16).

Figure 52 shows that the addition of 10% probing to the control vector (with K s = 0.1" I6)

made the identification process slightly more convergent after step 100. Figure 53 shows that the

identification convergence could be further improved by increasing the amount of random forcing

to 100%. Although clearly too much for practical vibration control, this proved that the problem of

slow convergence was the result of having a poor signal-to-noise ratio in closed-loop operation.

Lastly, identification performance for the case of continuous variation of the transfer matrix

was evaluated (see sec. 7.1). Just as before, the measurement noise level was 10%. Compared with

the baseline case having no identification (fig. 39), the overall identification error was reduced (fig.

54). The vibration controller using the identified transfer matrix was fairly good.

7.4 Closed-Loop Generalized Kalman Filter Identification: Local Model

Closed-loop identification of the local model using the generalized Kalman filter was initially

simulated with R = 1 and M = 10 (R = I N and M = 10 I6), because that tuning worked well in

open-loop identification. Using a batch size of 1 for the case of no measurement noise and no

probing, the identification process stopped when the uncontrolled vibration approached zero (fig.

55(a)). In fact, after about 10 simulation steps, the identification error was seen to be almost

constant. However, the addition of a 10% probing signal allowed convergence to a much lower

identification error by the end of the simulation run at step 200 (fig. 55(b)).

With 10% measurement noise, the identification process became highly divergent (fig. 56).

Interestingly, the vibration control remained very good. Figure 57 shows that increasing the multi-
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stepbatchsizehelpeddelay the identification error growth, but did not prevent the identification

error from becoming large by iteration 200.

Figure 58 shows that the unbounded increase in the identification error was halted by

introduction of a 10% probing signal. This did not degrade the vibration control to a large extent.

For a batch size of 1, the overall level of identification error was about the same as that found

using the classic Kalman filter (fig. 58(a)). This was encouraging, because it meant that de-

coupling the recursive equations and reducing the number of tuning parameters (compared to the

classic version) did not worsen the identification accuracy of the generalized Kalman filter.

Increasing the multi-step batch size, however, did not improve identification performance until a

batch size of 48 was used (fig. 58(0). With that batch size, however, the algorithm was very slow.

Since multi-step batch sizes of 4 (fig. 58(b)), 8 (fig. 58(c)), 12 (fig. 58(d)), and 24 (fig. 58(e))

actually produced greater identification error, a batch size of only 1 was determined to be the best

choice. Evidently, the inaccuracies introduced by inversion of the (n x n) R matrix in equation (55)

had a slightly negative trade-off with the additional information contained in the greater number of

measurements as the batch size became larger. For a batch size of 48, the identification

performance was improved somewhat, but at the expense of a much increased computation time.

In an effort to reduce identification errors with the multi-step Kalman filter, a technique termed

"cycle averaging" was utilized. In this method, the actual control and vibration vectors were not

used in the identification process. Instead, the average values of these quantities were computed

and used. In effect, this averaging process helped attenuate the effects of measurement noise.

Figure 59 shows the effect of averaging over 1, 4, 8, and 12 cycles while using a multi-step batch

size of 1. Compared to the baseline case shown in figure 59(a), cycle averaging over 4 cycles

substantially lowered the identification error (fig. 59(b)). Contrary to expectations, averaging over

8 and 12 cycles (figs. 59(c) and 59(d)) was not as effective as it was with 4 cycles. Figures 60 and

61 show that similar results were obtained using batch sizes of 4 and 8, respectively. For these

batch sizes, averaging over 8 cycles produced the best identification.

Overall, the best identification with R = 1 and M = 10 * 16 was obtained using a batch size of 4

and 8-cycle averaging (fig. 62). For this case, the addition of 10% probing to the control produced

lower identification errors, but made the steady-state vibration control slightly worse.

The identification performance using the alternative Kalman filter tuning of R = 100 and

M = 1 * 16was then tested for the same case of 10% measurement noise and a batch size of 4.

Figure 63(a) shows that the addition of 10% probing made the identification slightly convergent

after step 100 for the case of no cycle averaging. Figure 63(b) shows that averaging over 8 cycles

made the identification worse. Therefore, with R = 100 and M = 16, the best results were obtained

using a batch size of 4 without cycle averaging.

The identification results for the case of continuously varying the transfer matrix (see sec. 7.1)

are shown in figure 64. Figure 64(a) presents the results for the R = I and M = 10 * 16 tuning with

averaging over 8 cycles; figure 64(b) shows the results having R = 100 and M = 1 with no

averaging. Though the identification and vibration control results were similar, the R = 1 and

M - l0 * 16 tuning yielded lower identification errors and produced slightly better vibration
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control throughoutmostof thesimulationrun.With this tuning,the identificationerrorwaskept at
a fairly constantlevel,eventhoughthedisturbancesbecamegreaterasthesimulationprogressed.

7.5 Closed-Loop Generalized Least-Mean-Squares Filter Identification: Local Model

The generalized LMS filter simulation was started with K s = 0.3 * 16 since that value worked

well in open-loop simulation. Figure 65(a) shows that for no measurement noise, the identification

process was convergent until about simulation step 130, from which point it did not decrease

further. Figure 65(b) shows that by adding 10% probing, the identification error was further

reduced, but not greatly.

The generalized LMS filter identification process was not destabilized by the addition of 10%

measurement noise. Figure 66(a) shows that without probing, the 10% measurement noise did not

cause the identification errors to grow large; however, the addition of 10% probing did not greatly

improve the identification performance either (fig. 66(b)).

The effect of multi-step batch sizes was also simulated for the 10% measurement noise case.

For batch sizes of 4 or greater, it was found necessary to reduce K s to 0.1 * 16 in order to maintain

identification stability. Figure 67 shows the identification error and vibration control using multi-

step batch sizes of 4, 8, and 12. A multi-step batch size of 8 produced the lowest identification

errors. A batch size of 12 displayed unstable identification and control. However, other simulation

results (not presented herein) showed that identification stability could be regained by reducing K s

further. Unfortunately, that reduction also slowed the identification process greatly, and thereby

made the identification performance poor overall.

With a multi-step batch size of 8, figure 68 shows that adding 10% probing to the control

signal for the case of 10% measurement noise lowered the identification error somewhat,

compared to that shown in figure 67(b).

Lastly, the effect of cycle averaging, previously used with the generalized Kalman filter, was

simulated for the case of 10% measurement noise. Figure 69 presents the identification error

obtained for a multi-step batch size of 8 with averaging over 4, 8, and 12 cycles. These results

showed that averaging over 4 cycles (fig. 68(a)) improved the identification stability. Averaging

over 8 and 12 cycles did not help to further lower the identification error.

Since the generalized LMS filter was seen to work the best when a batch size of 8 and 4-cycle

averaging was used, that configuration was also evaluated for identification of a continuously

varied transfer matrix (see sec. 7.1). Using K s = 0.1 * 16, the identification was found to be very

erratic. However, by reducing K s to 0.01 * 16, identification convergence was regained. The

identification error was somewhat controlled, but grew larger as the simulation progressed (fig.

70). The vibration controller performance was also poor.
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8. CLOSED-LOOP IDENTIFICATION OF THE GLOBAL MODEL

Thus far, all the simulation results presented were those obtained when using a local transfer-

matrix model relating small changes in the control (cyclic pitch) vector to small changes in the

measurement (vibration) vector. Whereas the local model assumes linearity only about a local

operating point, the global model assumes global linearization about the identified uncontrolled
vibration. (Recall that the uncontrolled vibration, z0, is defined as the vibration level with the

control vector elements all set to zero.) While global linearization might present certain problems

for a highly nonlinear system, a possible advantage of the global model is that by using the

identified uncontrolled vibration, the controller might work better. That is, by using an identified

feedback variable, rather than a measured one, the effects of measurement-noise disturbances

might be better rejected.

In the global-model formulation, the last column of the identified transfer matrix represents the

uncontrolled vibration. For the (6 x 6) transfer matrix considered here, equation (6) becomes

[i]i • z01 el= /

n LTn| Tn6 z0. 1
(80)

In this equation, the new (7 × 1) control vector consists of a (6 x 1) control vector and "1"

appended as the seventh element to add in the z0terms. Placed in this form, the model can be

identified by using exactly the same equations developed for the local model (Az =TA0) by

substituting z for Az and 0 for A0.

Presented below are some results obtained in simulation of the global-model identification and

vibration control using feedback of the identified uncontrolled vibration.

8.1 Closed-Loop Weighted-Least.Squares-Error Identification: Global Model

Identification of the global model using the weighted-least-squares-error (WLSE) method was

first simulated with a batch size of 12. Random changes to the input vector were made to excite the

plant matrix. Figure 71 shows that even for the case of no measurement noise, the identification

process was very erratic and produced high amounts of identification error. The vibration control

was also noted to be poor.

As it did with the local model, skipping the identification cycle for vibration lower than 0.05

(of the nominal value = 1.0) resulted in a stabilization of both the control and identification

processes (fig. 72). However, introduction of 10% measurement noise upset the performance

greatly. Acceptable identification and controller performances were regained by skipping the

identification cycle for vibration lower than 20% of the nominal value. Figures 73(a) and 73(b)

present the identification and control performance for the case of 10% measurement noise with
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identification-cycleskippingfor vibration lower than20%of theuncontrolledlevel for batchsizes
of 12and 24, respectively.The identificationerror obtainedusinga batchsizeof 24 wasclearly
muchlower thanthat for abatchsizeof 12.Thecontrollerperformancewasverygoodusingeither
batchsize.

The batch-size-24configurationwith 10%probingandzero-vibrationdefinedat 0.20wasalso
simulated for identification of a continuously varying transfermatrix previously describedin
section 7.1. Figure 74 showsthat the identification error grew large after simulation step 300.
Although not shown in that plot, the actualerror was of the order of about 4 and was fairly
constant.Evenwith that amountof error in the identifiedtransfermatrix, thevibrationcontrolwas
remarkablygood.This reflects favorablyon thedeterministiccontrol law, sinceit wasableto step
to the optimal control input, eventhoughthe identified matrix wasnot very close to the actual
plant model.

8.2 Closed-Loop Kalman Filter Identification: Global Model

Simulation results for the global model showed that just as for identification using the local

model, the ratio of r to the M diagonal elements was the factor that most influenced closed-loop

identification. The identification error and vibration control for the case of no noise and M = 1 * 16,

are shown in figure 75 for r values of 1, 10, and 100. The (r = 100, M = I6) tuning provided the

lowest identification errors (fig. 75(c)). The tuning ratio of r = 1 and M = 10 * 16 was also tried,

since those values sometimes worked well with the local model. However, that tuning destabilized

the global-model identification entirely.

The addition of 10% measurement noise did not greatly affect the identification performance.

Figure 76 shows the results obtained for M = 16, and for r values of 1 (fig. 76(a)), 10 (fig. 76(b)),

and 100 (fig. 76(c)). Just as for the no-noise case, M = 16 and r = I00 provided the lowest

identification errors and the best vibration control. Figure 77 shows that the addition of a 10%

probing signal did not improve the identification performance beyond that of figure 76(c).

Identification performance for the case of continuously varying the transfer matrix (see sec.

7.1) was evaluated with r = 100, M = 16, Q = 10 * 16, and with 10% measurement noise (fig. 78).

The sinusoidal bump in the identification error seen after step 500 indicated that the identified

transfer matrix was unchanging, thereby allowing the sinusoidal variation in the system transfer

matrix to show up in the identification error metric. The Kalman filter could not adapt the matrix

during this time because the vibration was so well controlled. As already mentioned for the local

model, the Kalman filter identification stopped as the change in control approached zero.

8.3 Closed-Loop Least-Mean-Squares Filter Identification: Global Model

Global model identification using the classic least-mean-squares (LMS) filter was initially

begun using K s = 0.3 * 16, since that worked in both open-loop simulation and closed-loop

simulation using the local model. However, even for the case of no measurement, that gain

destabilized both the identification and control processes. Figure 79(a) shows that even K s = 0.05 *

16 produced unstable identification results. The result was oscillatory behavior of the controller.

Figure 79(b) shows that by reducing K s to 0.02 * 16, the oscillatory nature of the controller was
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eliminated. Although the identification error still exceededthe boundaries of the plot after
simulation step 100, the stability of the controller indicatedthat the identification processwas
working better than before.Figure 79(c) showsthat by further reducing Ks to 0.01 * 16,the
performanceof both identificationandcontrollerwasmuchimproved.ReducingK sbelow0.01 *
I6, however, did not improve identification or control, because the identification response time was

greatly slowed.

With K s = 0.01 * 16, the introduction of 10% measurement noise did not noticeably affect the

identification or controller performance (fig. 80). Of course, the measurement noise did prevent the

vibration from being completely eliminated.

Figure 81 shows that slightly lower identification error could be obtained by introducing a

control probing signal of 0.1 magnitude; since it also degraded the vibration suppression only

slightly, however, its value was deemed to be of marginal importance.

Lastly, the identification error produced for the case of continuously varying the transfer matrix

was evaluated. With K s = 0.01, the identification error became very large after simulation step 400

(fig. 82(a)). The vibration control was also poor after that point. By reducing K s to 0.001 * 16, the

vibration was better reduced (fig. 82(b)). Although the identification error was still high, the

transfer matrix was better identified for the purpose of control.

8.4 Closed-Loop Generalized Kalman Filter Identification: Global Model

With R = 100 and M = I6, the generalized Kalman filter was found to be insensitive to batch

size, cycle-averaging size, and control probing. Figure 83(a) shows the identification error and

controller performance using a batch size of 1 for the case of no measurement noise. This

performance was not greatly affected by the introduction of 10% measurement noise (fig. 83(b)).

Figures 84(a) and 84(b) show that increasing the multi-step batch size to 4 and 8, respectively, did

not change the identification performance noticeably from that found using a batch size of only 1

(fig. 84(b)). Figures 85(a) and 85(b) show that for a batch size of 4, using 4- and 8-cycle averaging

also had little effect on the identification performance. Lastly, the addition of 10% control probing

did not serve to lower the identification error (fig. 86). The behavior of the controller using the

identified transfer matrix and uncontrolled vibration feedback appeared to work very well in each

case.

Identification of a continuously varied transfer matrix of the type described in section 7.1 was

then simulated with R = 100 and M = 16, batch size = 1, no probing, and no cycle averaging. The

resulting identification error and vibration control history are presented in figure 87. This shows

that the controller worked well except after the step changes in the transfer matrix. The vibration

was ultimately well controlled after each step, implying that the identification process was

working. However, convergence to zero identification error was not achieved.

8.5 Closed-Loop Generalized Least-Mean-Squares Filter Identification: Global Model

The generalized LMS filter was simulated with K_ = 0.01 * 16, since that value worked well

for the classic LMS filter. For the case of 10% measurement noise, figure 88 shows the identifi-
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cation error and vibration control for a multi-step batch size of 4 and 4-cycle averaging.The
identification performancedid not changeappreciablywithout cycle averaging.Reductionsin Ks
also hadlittle effect. Figure 89 showsthat the identification performancewith batchsize4, 10%
probing,K s = 0.001 * 16, and no cycle averaging was almost identical to that seen in figure 88.

Figure 90 shows the identification error found for the continuously varied transfer-matrix

identification test of section 7.1. As before, the measurement noise was 10%, the batch size was 4,

and K s was set to 0.001 * 16. The resulting vibration control was fairly good, indicating that the

identification algorithm was working fairly well near the end of the simulation, even though the

identification index was somewhat high.

9. SUMMARY AND COMPARISON OF THE IDENTIFICATION METHODS

In the preceding sections, the open-loop and closed-loop simulation results were presented for

each of the five system-identification techniques. In this section, the best results for each method

are compared so that relevant conclusions may be drawn. For simplicity, the matrix dimension of

the diagonal matrices is assumed since all simulations presented before were for the case of a

(6 x 6) transfer matrix. Hence, for example, M = 0.1 is used rather than the more correct but longer

M = 0.1 * 16 notation.

9.1 Comparison of Open-Loop Identification

Figure 91 compares the overall best open-loop results obtained for each of the five

identification methods. The identification performances shown in these cases are roughly

equivalent. All plots show about the same level of identification error versus simulation step.

The weighted-least-squares-error (WLSE) approach using a batch size of 24 clearly produced

the lowest identification error (fig. 91(a)). Moreover, the identification error might have been

reduced slightly further using a batch size of 48. The fact that a batch size of 48 would have

required significantly more computation time than batch sizes of 12 or 24 is unimportant for the

open-loop identification case. It should also be remembered that absolutely no tuning was required

by this method.

The other identification methods, although providing similar identification accuracy (relative to

each other), required different amounts of tuning. The classic LMS filter required the least tuning,

having only a single tuning parameter, K s. The tuning was very easy because it was known, from

theory, that small enough values of K s would always produce stable and convergent identification.

The LMS filter was also computationally the fastest method. Although the Kalman filter was

almost as fast computationally, finding the correct M/r ratio was more difficult. The multi-step

methods were computationally more intensive, but by using multiple measurements, the multi-step

methods yielded somewhat lower steady-state identification errors. For the same reason however,

they showed slightly higher identification errors after the transient step change to the transfer

matrix at simulation step 100.
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Forthesereasons,the weighted-least-squaresapproachwasjudgedto havethe bestopen-loop
identification performance.Of the recursiveidentification methods,the classic LMS filter was
preferredfor its computationalefficiencyandeaseof tuning.

9.2 Comparison of Closed-Loop Local-Model Identification

Figure 92 presents the best identification performance obtained by each of the five methods in

attempting to identify the local transfer-matrix model before and after a change in the system

transfer matrix after simulation step 100. For comparison purposes, the identification error for no

identification is presented in figure 92(a). Figure 92(b) shows the weighted (c_ = 1, _, = 1) least-

squares-error method using a batch size of 24 and zero vibration defined as being 0.20 of the

baseline vibration. Figure 92(c) presents the identification error obtained using the classic Kalman

filter with r = 100, M = 1, Q = 10, and with probing set at 10%. Figure 92(d) shows the LMS filter

identification with K s = 0.1 and probing of 10%. Figure 92(e) shows results for the generalized

Kalman filter with R = 1, M = I0, a batch size 4, a cycle-averaging size of 8, and 10% probing.

Figure 92(f) shows the results for the generalized LMS filter with K s = 0.1, a batch size of 4, and a

cycle-averaging size of 4.

In comparing the figures, it is seen that none of the methods succeed in totally eliminating the

identification error. The weighted-least-squares method showed the most identification error after

the transfer-matrix step change at simulation step 100 and also had the highest steady-state error

(fig. 92(b)). Figures 92(c) and 92(d) show that the classic Kalman and LMS filter algorithms

reduced the identification error slowly as the simulation progressed, with the LMS filter being

slightly better. The generalized Kalman filter did the best job of reducing the identification error

(fig. 92(e)) because it continued to reduce the error as the simulation progressed. All the methods

used probing to assist the identification process. Without probing, the generalized methods reduced

the identification error, but very slowly.

The corresponding closed-loop vibration control records are shown in figure 93. As expected, it

is seen that the weighted-least-squares method, which showed the largest transient identification

error at simulation step 100, also displayed the worst vibration control (fig. 93(b)). Remarkably, as

the simulation progressed, it attained virtually the same level of vibration control as the other

methods. Correlating the vibration reduction to the identification-error reduction in figure 92, it is

seen that the identification error was not eliminated by any of the recursive methods, because the

optimal control vector was found before the transfer matrix was fully identified. That is, using only

a partially identified matrix, the deterministic control law was able to step to the optimum in a few

steps. Once found, the control did not change, and the identification process virtually stopped. The

generalized LMS and Kalman multi-step methods produced better vibration control during the

transient change introduced at simulation step 100.

Therefore, it appears that for closed-loop identification using the local model, that the best

methods were the LMS filter and the generalized Kalman filter. The LMS filter was

computationally efficient and used a single tuning parameter, whereas the generalized Kalman

filter offered somewhat improved identification accuracy. However, the difference in identification

performance appeared to be relatively unimportant in terms of vibration control.

47



Figure 94comparesthe local model,closed-loopidentification errorobtainedfor the caseof
continuousvariation of thetransfermatrix (seesec.7.1). Thebaselineidentificationerror without
on-line identification is shown in figure 94(a).The performanceof the least-squaresmethodis
shownin figure 94(b); of theKalmanfilter in figure 94(c);of theLMS filter in figure 94(d); of the
generalizedKalmanfilter in figure 94(e); andof thegeneralizedLMS filter in figure94(f). Eachof
the methodswas tunedasbefore,with theexceptionof thegeneralizedLMS method,which was
tunedhaving K s = O. 1, a batch size of 8, and a cycle-averaging size of 4. The least-squares method

clearly produced the largest identification errors. The identification errors of the remaining

recursive methods were similar, though again the generalized Kalman filter was the best (fig.

94(e)). The generalized LMS filter identification error was higher near simulation step 1000.

Figure 95 shows the corresponding closed-loop vibration control for the same identification

cases shown in figure 94. The vibration control was found to be similar for each of the methods

except for the weighted-least-squares method (fig. 95(b)). The vibration control using this

identification method was better than that of any of the recursive methods. The reason for this

gain, however, might not be the identification performance per se; rather, the gain might be a result

of the artificial bypassing of the identification process for vibration levels below the set threshold

vibration limit. All of the recursive methods produced good vibration control near the middle of

the simulation, but they became more erratic as the changes in the plant-matrix model were made

larger near the end of the simulation. The multi-step methods appeared to offer no advantage over

their more computationally efficient, single-step counterparts.

9.3 Comparison of Closed-Loop Global-Model Identification

The best global-model identification results that were achieved with each of the five methods

are shown in figure 96 for the case of 10% measurement noise and a 50% change in the system

transfer matrix at simulation step 100. Figure 96(a) shows the identification error resulting after

step 100 without identification. Figure 96(b) shows the weighted-least-squares identification error

obtained using a batch size of 24 and with "zero-vibration" defined as 0.20 of the nominal value.

Figure 96(c) shows the identification error obtained using the classic Kalman filter with r = 100, M

= 1, Q = 10, and with 10% probing of the control vector. Figure 96(d) shows the classic LMS filter

identification results with K s = 0.01 and 10% probing. Figure 96(e) shows the identification error

of the generalized Kalman filter with R = 100, M = 10, a batch size of 4, a cycle-averaging size of

8, and with 10% probing. Finally figure 96(f) shows the identification error for the generalized

LMS filter with K s = 0.01 and with a multi-step batch size of only 1 and no cycle averaging.

Comparing the plots shown in figure 96 with those shown in figure 92, it is seen that with the

global model, each of the identification methods produced lower identification errors than using

the local model. Each method appeared to produce the same identification accuracy. Moreover,

figure 97 shows that the vibration control was equally similar for each of the methods. Therefore,

the classic LMS algorithm was in some respects the best algorithm to use because it required the

fewest tuning parameters and was computationally the fastest method.

Figure 98 compares the identification error obtained with each of the five methods for the case

of the continuously varied global-model transfer matrix (see sec. 7.1). Figure 98(a) shows the

baseline identification error without on-line identification. The identification error of the weighted-
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least-squaresmethodis shownin figure 98(b); of the classicKalmanfilter in figure 98(c); of the
classic LMS filter in figure 98(d); of the generalizedKalman filter in figure 98(e); and of the
generalizedLMS filter in figure 98(f). Thefilters wereall tunedasdescribedabove,exceptthatthe
classicandgeneralizedLMS filter identificationgainsK swere reducedto 0.001to improvetheir
identificationperformance.

The plots in figure 98 (comparedwith thosein fig. 94) show that the weighted-least-squares
and theclassicLMS filter methodsproducedhigher identification errorsusing the global model
(figs. 98(b),98(d)) thanwhenusingthe local model.Theidentification performanceof the classic
andgeneralizedKalmanfilters (figs. 98(c), 98(e))were virtually identical.Since the generalized
Kalmanfilter wasimplementedusingfew tuningparameters,it wasjudged superiorto theclassic
version.

Figure 99showsresultssimilar to thosefor thelocal model;that is, thebestvibration control,
by far, was obtainedusing the weighted-least-squares-errormethod (fig. 99(b)). The vibration
suppressionobtainedusingthis identification methodwasnearly perfect,displaying only a few
small glitches of vibration. All of the recursiveversions displayed erratic vibration control.
Although vibration control wassometimesvery good,the recursivemethodsgenerally failed to
control vibration after the discontinuitiesin the transfermatrix were introducedusing the global
model. For thesemethods,vibration control usingthe local model wasclearly better, especially
during thefirst half of thesimulationrun whenthesystemtransfermatrixwasvariedslowly.

The superiorvibrationcontrol (fig. 99(b)) usingtheweighted-least-squaresmethodin moving
block format with a batchsizeof 24wasa surprise,consideringtheapparentlyhigh identification
error shown in figure 98(b). Although the transfermatrix was computedto be more in error
accordingto the absolutevalueof eachelementin the identified transfermatrix comparedto its
truevalue,it obviouslyworkedwell with thedeterministiccontrol law.Perhapsthe memoryof 24
measurementsallowed the least-squaresmethod to find a matrix that worked well with the
deterministiccontrol law. This identifiedmatrix, eventhoughin error relative to thetrue transfer
matrix, may have had the row elements identified well in proportion to each other, thereby
allowing thedeterministiccontrollerto steptowardtheoptimum control input without being fully
identified.Hadtheidentificationerrormetricbeendesignedwith thetransfer-matrixelementratios
in mind,thegoodvibrationcontrolresultsmighthavebeenexpected.

9.4 Conclusions

Two general conclusions can be drawn from this system identification study. First, alternatives

to the classic Kalman filter identification method exist that offer greater ease of implementation or

faster computation or both. The accuracy of these methods, however, is not necessarily better than

that of the classic Kalman filter method, given correct tuning information. Second, it is noteworthy

that none of the identification methods simulated herein were found to be capable of identification

convergence as the vibration level became reduced to the same level as the measurement noise

including the classic Kalman filter method. This advocates the need for continued system

identification research, since it is not an uncommon event that once good vibration control is

achieved, the signal-to-noise ratio becomes high, thereby creating an environment that is very

unamenable to system identification.
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Theprincipalspecificfindingsof this investigationarenotedbelow.

1. The only reliable methodof transfer-matrixidentification wasopen-loopexcitation of the
plant dynamics.In open-loop,all identification methodsproducedsimilar identification accuracy
and stability. Measurementnoiseraisedtheamountof steady-stateidentificationerror,but did not
prevent identification convergencetoward the true estimate,becausethe open-loopexcitation
commandswere always large enough to producea sufficiently high signal-to-noiseratio for
identification purposes.As wasshownin figure 91, themulti-step KalmanandLMS filters may
have yielded a slight improvementin identification accuracy.However,becausethesemethods
alsorequiredsometuning to work correctly, the methodof weighted-least-squares(with identity
matrix weighting) is recommended for open-loop identification. A batch size of 24-48
measurementsfor identificationof the(6 x 6) transfermatrix is recommendedto reducetheeffects
of measurementnoise.Transfermatriceshavingmorecolumnsmay requiremoremeasurements.
As a generalrule, the numberof input-outputpairs acquiredshouldbeabout3 timesthecolumn
dimensionof the transfermatrix. The lower computationalspeedof the least-squaresmethodis
irrelevantsincethecomputationsdonefor open-loopidentificationdonot needto bedoneundera
time constraint.

2. In closed-loopoperation,in which the identified transfermatrix wasusedin a deterministic
control law to reducethe measuredvibration (or measurementvector),suppressionof thevibration
was clearly no indicator of correct transfer-matrix identification. Each of the identification
methodswasfound to becapableof adjustingthe identifiedtransfer-matrixelementsin sucha way
that the deterministiccontroller could find the optimumvibrationcontrol settingslong beforethe
transfermatrix wascorrectly identified.

3. Closed-loopidentificationwasmuchmoredifficult thanopen-loopidentificationbecausethe
control commands were chosen to control the helicopter vibration, rather than to provide
excitation.As thevibration becamewell reducedin closed-loopoperation,thesignal-to-noiseratio
decreased,because the measurementnoise became an increasingly larger portion of the
measurementsignal.As the optimumcontrol solutionwasachieved,thechangesto the identified
transfer matrix becamevery small, becausethe recursive algorithms formulated the changes
proportionally to both the changein control and to the difference betweenthe measuredand
estimatedvibration (i.e., z - TO). As one or both of theseapproachedzero asthe vibration was
controlled, the identification processwaseffectively shutdown.In addition, sincethechangesto
the control input were very small, they appearedlesscorrelatedto the changesin the measured
vibration; a result of the randommeasurementnoise. This madethe updatesto the identified
matrix alsotakeona largely randomnature.For thesereasons,convergenceto thecorrect transfer
matrix wasvery slow oncegoodvibrationcontrol wasachieved.This resultedin the identification
error taking on a constantvalue,eventhoughconvergenceto the correct transfermatrix was far
from completed.

4. The addition of perturbationor probing signalsto the control vector increasedthe rateof
closed-loop transfer-matrix identification and also preventedthe identification algorithms from
producing large constanterror values in steady-stateoperation.However, theamountof steady-
statevibration remaining wasalsoincreased,thereby degradingcontroller performance.For this
reason,thetechniqueof probingseemsimpracticalfor realvibration-controlapplications.
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5. In closed-loopoperation,the weighted-least-squaresmethodalwaysproducedthe highest
identificationerrors,but thebestvibrationcontrol.As the controller reached a steady-state solution

for optimal control, the control-covariance matrix became singular, thereby producing poor

identification in closed-loop. Adding a perturbation signal to the control vector did not greatly

improve the situation. However, not performing the identification (and moving-block sequencing)

for vibration below 0.20 of the baseline vibration level offered surprisingly good vibration control

(see figs. 95, 99). Although not evaluated, it is possible that the recursive methods might have also

produced better vibration control with the application of this logic. Therefore, using the weighted-

least-squares-error method in moving-block format was determined to be very feasible. The

selection of the correct threshold vibration level represents selection of a tuning parameter no more

difficult to select than those used by the recursive identification methods.

6. The most computationaIly efficient and least complex recursive algorithm was the LMS

filter method: its speed and simplicity highly recommend this identification algorithm as the

method of choice since the more complicated recursive methods (i.e., Kalman filter, multi-step)

offered only slightly improved identification accuracy.

7. The Kalman filter, although sometimes observed to produce very good identification results,

was difficult to tune. The values chosen for r and M, as expected from theory, were found to

govern the trade-off between responsive identification and superior noise rejection. It was also

noted that over a wide range of r and M values, the ratio of r/M was generally the factor which

most influenced the system identification convergence behavior. In addition, whereas a non-zero Q

value was clearly required for good identification, almost any value of Q from 0.01 to 100

produced the same identification performance. However, tuning the filter was not a straightforward

exercise. For example, the tuning values that were found to be optimal for open-loop identification

(r = 1, M = 10, Q = 10), produced divergent identification in closed-loop operation. Although the

instability was eliminated by re-tuning the filter (r = 100, M = 1, Q = 10), this task would likely

prove to be difficult in real-world applications where strict simulation conditions cannot be so

easily maintained.

8. By using multiple measurements, the multi-step methods yielded somewhat lower steady-

state identification errors; yet, for the same reason, they gave slightly higher identification errors

after the transient step change to the transfer matrix. The generalized Kalman filter differed from

the classic Kalman filter not only because it allowed multiple measurements to be used in the

identification process, but also because its formulation did not recursively propagate the process-

noise covariance matrix. Although the generalized Kalman filter provided somewhat lower

identification error relative to the generalized LMS filter and the other recursive methods, the

difference was found to be unimportant in terms of closed-loop vibration-control performance. In

view of this, the classic LMS filter might be preferred for its computational efficiency, whereas the

weighted-least-squares method in moving-block format might be preferred for its superior
vibration control.

9. As was found using the weighted-least-squares method in moving-block format, in closed-

loop operation large identification errors in the transfer matrix did not necessarily preclude

excellent vibration control. The reason was, apparently, that the identified matrix, even though in

error compared to the true transfer matrix, may have had the row elements identified well in

51



proportionto eachother,therebyallowing thedeterministiccontroller to steptowardtheoptimum
control input without beingfully identified.

10.Takenoverall,both localandglobalmodelsinvestigatedby this studyproducedequivalent
identification accuracy and closed-loop vibration control performance. Neither model was
preferredover theother.

REFERENCES

1. Clay, D.; and Chadwick, J.: "Helicopter Vibration Analysis and Control." Proceedings of the

44th Annual National Forum of the American Helicopter Society, Washington, D. C., June

1988, pp. 243-250.

2. Stewart, W.: "Second Harmonic Control on the Helicopter Rotor." Aeronautical Research

Council, Reports and Memoranda No. 2997, August 1952.

3. Arcidiacono, P. J.: "Theoretical Performance of Helicopters Having Second and Higher

Harmonic Feathering Control." J. Am. Helicopter Soc., vol. 6, no. 2, April 1961, pp. 8-19.

4. Wernicke, R. K.; and Drees, J. M.: "Second Harmonic Control." 19th Annual National Forum

of the American Helicopter Society, May 1963, pp. 1-7.

5. Sissingh, G. J.; and Donham, R. E.: "Hingeless Rotor Theory and Experiment on Vibration

Reduction by Periodic Variation of Conventional Controls." NASA SP-352, 1974, pp. 261-

277.

6. McCloud, J. L., III; and Kretz, M.: "'Multicyclic Jet-Flap Control for Alleviation of Helicopter

Blade Stresses and Fuselage Vibration." NASA SP-352, 1974, pp. 233-238.

7. McCloud, J. L. III: "An Analytical Study of a Multicyclic Controllable Twist Rotor."

Proceedings of the 31st Annual National Forum of the American Helicopter Society, May

1975.

8. McCloud, J. L. III; and Weisbrich, A. L.: "Wind Tunnel Test Results of a Full-Scale

Multicyclic Controllable-Twist Rotor." Proceedings of the 24th Annual National Forum of

the American Helicopter Society, Washington, D. C., May 1978.

9. Brown, T. J.; and McCloud, J. L., III: "Multicyclic Control of a Helicopter Rotor Considering

the Influence of Vibration, Loads, and Control Motion." AIAA Paper 80-673, May 1980.

10. Shaw, J.; and Albion, N.: "Active Control of the Helicopter Rotor for Vibration Reduction."

Paper No. 80-68, Proceedings of the 36th Annual National Forum of the American

Helicopter Society, Washington, D. C., 1980.

52



11.Shaw,J.; Albion, N.; Hanker,E. J.;andTeal,R. S.: "Higher HarmonicControl: Wind Tunnel
Demonstrationof Fully Effective Vibratory Hub ForceSuppression."Proceedingsof the
41st Annual National Forumof the AmericanHelicopter Society,Fort Worth, TX, May
1985,pp. 1-15.

12.Molusis,J. A.; Hammond,C. E.; andCline,J.H.: "A Unified Approachto theOptimal Design
of Adaptive and Gain ScheduledControllers to Achieve Minimum Helicopter Rotor

Vibration." Proceedings of the 37th Annual National Forum of the American Helicopter

Society, New Orleans, LA, May 1981, pp. 188-203.

13. Chopra, I.; and McCloud, J. L., III: "Considerations of Open-Loop, Closed-Loop, and

Adaptive Multicyclic Control Systems." Proceedings of the American Helicopter Society

National Specialist's Meeting on Helicopter Vibration Technology for the Jet Smooth Ride,

Hartford, CT, 1981.

14. Johnson, W.: "Self-Tuning Regulators for Multicyclic Control of Helicopter Vibration." NASA

TP- 1996, 1982.

15. Molusis, J. A.: "Investigation of Unexplained Behavior and Nonlinearity Observed in Wind

Tunnel Tests of Higher Harmonic Control." U.S. Army Research and Technology

Laboratories, TR-83-D8, Fort Eutis, VA, August 1983.

16. Wood, E. R.; Powers, R. W.; Cline, J. H.; and Hammond, C. E.: "On Developing and Flight

Testing a Higher Harmonic Control System." Proceedings of the 39th Annual National

Forum of the American Helicopter Society, St. Louis, MO, May 1983, pp. 592-612.

17. Davis, M. W.: "Refinement and Evaluation of Helicopter Real-Time Self-Adaptive Active

Vibration Controller Algorithms," NASA CR-3821, August 1984.

18. Haviland, J. K.; and Knospe, C.: "A Wide-Band, Time-Domain Adaptive Control for

Helicopter Vibrations." Proceedings of the First Army Research Office Workshop on

Rotorcraft, Boca Raton, FL, November 1986.

19. Franklin, G. F.; and Powell, J. D.: "Digital Control of Dynamic Systems." Addison-Wesley

Publishing Co., Reading, MA, 1980.

20. Bryson, A. E., Jr.; and Ho, Y-C.: "Applied Optimal Control: Optimization, Estimation, and

Control." Blaisdell Publishing Corp., New York, 1969.

21. Chen, R. T. N.; Eulrich, B. J.; and Lebacqz, J. V.: "Development of Advanced Techniques for

the Identification of V/STOL Aircraft Stability and Control Parameters." Cornell

Aeronautical Laboratories Technical Report (AD-730121), CAL No. BM-2820-F-1,

August 1971.

22. Goodwin, G. C.; and Payne, R. L.: "Dynamic System Identification: Experiment Design and

Data Analysis," Academic Press, New York, 1977.

53



23. Widrow, B.; and Hoff, M. E., Jr.: "Adaptive SwitchingCircuits." IRE WESCONConvention
Record,1960,pp.96-104.

24. Widrow, B.: "Adaptive Filters, Aspectsof Network andSystemTheory." Holt, Rinehart,and
Winston,Inc., New York, 1970.

25. Jacklin, S. A.: "Adaptive InverseControl for Rotorcraft Vibration Reduction,"NASA TM-
86829,1985.

26. Jacklin,S.A.: "Arranging ComputerArchitecturesto CreateHigherPerformanceControllers."
Advancesin Algorithms and ComputationalTechniquesfor Dynamic Control Systems,
AcademicPress,New York, 1988.

54



t'Y 0o

1.1.1o

! O

o

50 100 150

SIMULATION STEP

200

Figure 6. Plot of baseline identification error and open-loop excitation for the case of no
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Figure 7. Open-loop weighted-least-squares identification error for no measurement noise using

batch size n = 6 (Local Model).
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Figure 8. Open-loop weighted-least-squares identification error with 10% measurement noise

showing effect of using different batch sizes n: (a) n = 6; (b) n = 8; (c) n = 10; (d) n = 12;

(e) n = 24 (Local Model).
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Figure 9. Open-loop weighted-least-squares identification error for batch size n = 12 showing effect

of different amounts of measurement noise: (a) 10%, (b) 20% (Local Model).
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Figure 11. Open-loop weighted-least-squares identification error with 10% measurement noise and

batch size n = 12 showing effect of transfer-matrix size: (a) 6 x 6, (b) 12 x 6 (Local Model).
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Figure 12. Open-loop Kalman filter identification error for no measurement noise, Q = 0.0 * 16,

r = 0.1" (a) M = 0.1 * 16; (b) M = 16; (c) M = 10 * 16; (d) M = 100 * 16 (Local Model).
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Figure 14. Open-loop Kalman filter identification error for no measurement noise, Q = 0.0 * 16,

r = 10: (a) M = 0.1 * 16; (b) M = 16; (c) M - 10 * I6; (d) M = 100 * 16 (Local Model).
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Figure 15. Open-loop Kalman filter identification error for no measurement noise, Q = 0.0 * 16,

r = 1" (a) M = 0.1 * 16; (b) M = I6; (c) M = 10 * 16; (d) M = 100 * 16 (Local Model).
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Figure 16. Open-loop Kalman filter identification error for no measurement noise, r = 1,

M = 10 * I6: (a) Q = 0.0l * 16; (b) Q = 0.l * 16, (c) Q = I6; (d) Q = 10 * 16; (e) Q = lO0 * 16

(Local Model)• 64
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Figure 17. Open-loop Kalman filter identification error for 10% measurement noise, Q = 10 * 16:

(a) r= 1, M = 10 * I6; (b) r= 0.1, M = 16 (Local Model).
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Figure 18. Open-loop LMS filter identification error for no measurement noise: (a) K s = 0.00l;

(b) K s = 0.01; (c) K s = 0.1; (d) K s = 0.3; (e) K s = 0.5 (Local Model).
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(Local Model).
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Figure 20. Open-loop generalized Kalman filter identification error for no measurement noise and
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Figure 21. Open-loop generalized Kalman filter identification error for no measurement noise,
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(c) n = 4; (d) n = 8 (Local Model).
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Figure 22. Open-loop generalized Kalman filter identification error for 10% measurement noise,

M = 10 * 16, and R = 1, showing effect of different multi-step batch sizes: (a) n = l, (b) n = 2,

(c) n = 4, (d) n = 8 (Local Model).
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Model). 71



) mf ; : ; •

............................ 7 .........................................................................................

W e; ............................ ' ........................................................... ; .............................

O

(a)

Ita (b)

__e; .............................i............................._...........................................................
7

............... ° .........

O-

0 zo 1oo 15o z0o
SIMULATION STEP

Figure 24. Open-loop generalized LMS filter identification error for no measurement noise and

K s- 0.3 * 16, showing effect of different multi-step batch sizes n: (a) n = 1; (b) n -- 2 (Local

Model).
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Figure 25. Open-loop generalized LMS filter identification error for no measurement noise and multi-

step batch size n = 4: (a) K s * 16= 0.2; (b) K s * 16= 0.15 (Local Model)
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Figure 26. Open-loop generalized LMS filter identification error for no measurement noise and
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Figure 27. Open-loop generalized LMS filter identification error for 10% measurement noise and

multi-step batch size n = 6: (a) K s = 0.15 * 16; (b) K s = 0.05 * 16 (Local Model).
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Figure 29. Comparison of open-loop identification error for 10% measurement noise and identity

transfer-matrix initial conditions: (a) Kalman filter, M = l0 * 16, r = 1, Q = l0 * Ie; (b) LMS

filter, K s = 0.3; (c) generalized Kalman filter, multi-step batch size n = 6, M = 16, R = 10;

(d) generalized LMS filter, multi-step batch size n = 6, K s = 0.05 * 16 (Local Model).
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Figure 30. Plot of open-loop identification error, uncontrolled vibration, and controlled vibration

levels for the case of no identification and no measurement noise (Local Model).
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Figure 31. Closed-loop weighted-]east-squ_es identification error and vibration for no measurement

noise using batch size n = 8 (Local Model).
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Figure 32. Closed-loop weighted-least-squares identification error and vibration for no measurement

noise using batch size n = 8 and "zero-vibration" defined as 0.05 (Local Model).
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Figure 33. Closed-loop weighted-least-squares identification error and vibration for 10%

measurement noise using batch size n = 8 and "zero-vibration" defined as 0.05 (Local Model).
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Figure 34. Closed-loop weighted-least-squares identification error and vibration for 10%
measurement noise using batch size n = 8 and "zero-vibration" defined as 0.20 (Local Model).
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Figure 35 (part 1). Closed-loop weighted-least-squares identification error and vibration using batch
size n = 8 and "zero-vibration" defined as 0 15: (a) 1% measurement noise; (b) 3% measurement

noise (Local Model).
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Figure 35 (part 2). Closed-loop weighted-least-squares identification error and vibration using batch
size n = 8 and "zero-vibration" defined as 0.15: (c) 5% measurement noise; (d) 7.5% measurement

noise (Local Model).

81

(d)



t_
O
r_

L_

i

Z
<
l.I

"_1 ¢q

tt_

>o-

| LI[G[ND

.............................................................h ............. _.,,,_o,,,o,.,.[°,,,,,.,,__._.

I ! I

0 50 100 150 200

SIMULATION STEP

(a)

+

_ m IM I u.co.t.oL_o v,....o.

...........I - -+++at+b_m'ar°'+'- -_

g

_E 0 50 100 150 200

SIMULATION STEP

Figure 36. Closed-loop weighted-least-squares identification error and vibration for 10%

measurement noise using batch size n = 8 and "zero-vibration" defined as 0.20, showing effect

of random perturbation: (a) 10% probing; (b) 50% probing (Local Model).
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Figure 37 (part 1). Closed-loop weighted-least-squares identification error and vibration for 10%

measurement noise using batch size n = 24: (a) "zero-vibration" of 0.20, 10% probing; (b) "zero-

vibration" of 0.10, 10% probing (Local Model).
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Figure 37 (part 2). Closed-loop weighted-least-squares identification error and vibration for 10%

measurement noise using batch size n = 24: (c) "zero-vibration" of 0.10, 5% probing (Local Model).

84



t_

tv .
t_,o
t._l o
_"2.

O

-'_ ¢q

z'q.
O

t_
ra

tt_

7"

IMO
"_ 0

.... . ........... . ............ i ....................... 0.....

50

i I.[G[ND
..................... [ UN CO NTRO LL[O Yl llaATlON

100 150 200

SIMULATION STEP

(a)

LEGEND _ _

_i UNOONTEOLL_D VllltA_ON

.......i............

100 150 200

SIMULATION STEP

Figure 38 (part 1). Closed-loop weighted-least-squares identification error and vibration for 10%

measurement noise using batch size n =18 and "zero-vibration" of 0.0: (a) 30% probing; (b) 60%

probing (Local Model).
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Figure 38 (part 2). Closed-loop weighted-least-squares identification error and vibration for 10%

measurement noise using batch size n = 18 and "zero-vibration" of 0.0: (c) 100% probing (Local
Model).
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Figure 39. Identification error produced by variation of the system transfer matrix for the case of no

on-line identification (Local Model).
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Figure 40. Closed-loop weighted-least-squares identification error and vibration for 10%

measurement noise using batch size n = 24: "zero-vibration" of 0.20 for the case of continuous

transfer-matrix variation (Local Model).
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Figure 41. Closed-loop Kalman filter identification error and vibration for no measurement noise,

r = 1, M - 10 * 16, Q = 10 * 16: (a) no probing; (b) 10% probing (Local Model).
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Figure 42. Closed-loop Kalman filter identification error and vibration for 10% measurement noise,

r = 1, M = 10 * I6, and Q = 10 * 16, showing identification instability without probing (Local

Model).
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Figure 43. Closed-loop Kalman filter identification error and vibration for 10% measurement noise,

r = I, M = 10 * 16, Q = 10 * 16, and 10% probing (Local Model).
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Figure 44. Closed-loop Kalman filter identification error and vibration for no measurement noise,

r = 100, M = 16, and Q = 10 * 16 (Local Model).
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Figure 45. Closed-loop Kalman filter identification error and vibration for 10% measurement noise,

r = 100, M = I6, and Q = 10 * 16 (Local Model).
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Figure 46 (part 1). Closed-loop Kalman filter identification error and vibration for 10% measurement

noise, r = 100, M = 16, Q = 10 * 16: (a) 10% probing; (b) 30% probing (Local Model).

91



5'0 100

SIMULATION STEP

"_: 0 150 200

(c)

Z

A/I_A_AAA_+ILA/I,AJ_&IJo.oo,,._:,_':,.,.+,o.
'l_w_v'ijvrv_ii_lfvI--_+.,_+o+.,,,_o-.--
T' .....'_!+......_ v,._'
................ i........................ |--, ...........

i

,_o ,:_o 200
SIMULATION STEP

(d)

Figure 46 (part 2). Closed-loop Kalman filter identification error and vibration for 10% measurement

noise, r = 100, M = 16, Q = 10 * 16: (c) 100% probing; (d) 200% probing (Local Model).
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Figure 47. Closed-loop Kalman filter identification error and vibration for 10% measurement noise,

r = I, M = 10 * 16, Q = 10 * I6, and 100% probing (Local Model).
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Figure 48. Closed-loop Kalman filter identification error and vibration for 10% measurement noise

and continuous transfer-matrix variation, and Q = 10 * I6: (a) r = 1, M = 10 * 16; (b) r = 100,
M = 16 (Local Model).
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Figure 49. Closed-loop LMS filter identification error and vibration for no measurement noise and

no probing, K s = 0.3 (Local Model).
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Figure 50. Closed-loop LMS filter identification error and vibration for 10% measurement noise and

no probing, K s = 0.3 (Local Model).
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Figure 51. Closed-loop LMS filter identification error and vibration for 10% measurement noise and

no probing: (a) K s = O. 1; (b) K s = 0.5 (Local Model).
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Figure 52. Closed-loop LMS filter identification error and vibration for 10% measurement noise,

K s = 0.1, and 10% probing (Local Model).
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Figure 53. Closed-loop LMS filter identification error and vibration for 10% measurement noise,

K s = O. 1, and 100% probing (Local Model).
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Figure 54. Closed-loop LMS filter identification error and vibration for 10% measurement noise,

K s = 0.1, and 100% probing for continuous transfer-matrix variation (Local Model).
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Figure 55. Closed-loop generalized Kalman filter identification error and vibration for no measure-

ment noise, R = 1, M - 10 * 16, and multi-step batch size n = 1" (a) no probing; (b) 10% probing

(Local Model).
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Figure 56. Closed-loop generalized Kalman filter identification error and vibration for 10% measure-

ment noise, R = 1, M = 10 * 16, multi-step batch size n = 1, and no probing (Local Model).
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Figure 57. Closed-loop generalized Kalman filter identification error for 10% measurement noise, no

probing, r = I, and M = 10 * 16, showing effect of multi-step batch size n: (a) n = 4; (b) n = 8;

(c) n = 12; (d) n = 24 (Local Model).
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Figure 58. Closed-loop generalized Kalman filter identification error for 10% measurement noise,
10% probing, R = 1, and M = 10 * 16, showing effect of multi-step batch size n: (a) n = 1;

(b) n = 4; (c) n = 8; (d) n = 12; (e) n = 24; (f) n = 48 (Local Model).
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Figure 59. Closed-loop generalized Kalman filter identification error for 10% measurement noise,

10% probing, multi-step batch size n = 1, R = I, and M = 10 * 16, showing effect of the cycles-

averaged CA: (a) CA = 1; (b) CA = 4; to) CA = 8; (d) CA = L2 (Local Model).
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Figure 60. Closed-loop generalized Kalman filter identification error for 10% measurement noise,

10% probing, multi-step batch size n = 4, R = 1, and M = 10 * In, showing effect of cycles-

averaged CA: (a) CA = 1; (b) CA = 4; (c) CA = 8; (d) CA = 12 (Local Model).
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Figure 61. Closed-loop generalized Kalman filter identification error for 10% measurement noise,

10% probing, multi-step batch size n = 8, R = 1, and M = 10 * 16, showing effect of cycles-

averaged CA: (a) CA = 1; (b) CA = 4; (c) CA = 8; (d) CA = 12 (Local Model).
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Figure 62. Closed-loop generalized Kalman filter identification error and vibration for 10%

measurement noise, multi-step batch size n = 4, 8-cycle average, R = 1, and M = 10 * 16, showing

effect of (a) no probing; (b) 10% probing (Local Model)
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Figure 63. Closed-loop generalized Kalman filter identification error and vibration for 10%
measurement noise, multi-step batch size n = 4, R = 100, M = |6, and 10% probing, showing effect

of (a) no cycle averaging; (b) 8-cycle averaging (Local Model).
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Figure 64. Closed-loop generalized Kalman filter identification error and vibration for 10%
measurement noise, batch size n = 4, and 10% probing for the case of continuous transfer-matrix

variation, showing (a) R = 1, M = 10 * 16, CA = 8, (b) R = 100, M = 16, CA = 1 (Local Model).
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Figure 65. Closed-loop generalized LMS filter identification error and vibration for no measurement

noise, K s = 0.3 * 16, multi-step batch size n = 1" (a) no probing; (b) 10% probing (Local Model).
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Figure 66. Closed-loop generalized LMS filter identification error and vibration for 10%

measurement noise, K s = 0.3 * 16, multi-step batch size n =1: (a) no probing; (b) 10% probing

(Local Model). 1 lO
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Figure 67 (part 1). Closed-loop generalized LMS filter identification error and vibration for 10%

measurement noise, no probing, and K s = 0.1 * 16, showing effect of multi-step batch size n:

(a) n = 4; (b) n = 8 (Local Model).
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Figure 67 (part 2). Closed-loop generalized LMS filter identification error and vibration for 10%

measurement noise, no probing, and K s = 0.1 * 16, showing effect of multi-step batch size n:

(c) n = 12 (Local Model).
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Figure 68. Closed-loop generalized LMS filter identification error and vibration for 10%

measurement noise, 10% probing, K s = 0.1 * I_,, multi-step batch size n = 8 (Local Model).
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Figure 69. Closed-loop generalized LMS filter identification error for 10% measurement noise,

10% probing, multi-step batch size n = 8, and K s = 0.1 * 16, showing effect of cycles-averaged CA:

(a) CA = 4; (b) CA = 8; (c) CA = 12 (Local Model).
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Figure 70. Closed-loop generalized LMS filter identification error for 10% measurement noise,

10% probing, multi-step batch size n = 4, 4-cycle averaging, and K s = 0.01 * 16 for the case of

continuous transfer-matrix variation (Local Model).
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Figure 71. Closed-loop weighted-least-squares identification error and vibration for no measurement

noise, no probing, and batch size n = 12 (Global Model).
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Figure 72. Closed-loop weighted-least-squares identification error and vibration for no measurement

noise, no probing, batch size n = 12, and "zero-vibration" defined as 0.05 of baseline (Global

Model).
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Figure 73. Closed-loop weighted-least-squares identification error and vibration for 10%

measurement noise, no probing, and "zero-vibration" defined as 0.20 of baseline showing effect

of batch size n: (a) n = 12; (b) n = 24 (Global Model).
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Figure 74. Closed-loop weighted-least-squares identification error and vibration for 10%

measurement noise using batch size n = 24 with "zero-vibration" of 0.20 for the case of continuous

transfer-matrix variation (Global Model).
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Figure 75 (part 1). Closed-loop Kalman filter identification error and vibration for no measurement

noise, no probing, and Q = 10 * I6, showing effect of tuning: (a) r = I, M = 16; (b) r = I0, M = 16

(Global Model).
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Figure 75 (part 2). Closed-loop Kalman filter identification error and vibration for no measurement

noise, no probing, and Q = 10 * I6, showing effect of tuning: (c) r = 100, M = 16 (Global Model).
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Figure 76 (part 1). Closed-loop Kalman filter identification error and vibration for 10% measurement

noise, no probing, and Q = 10 * 16, showing effect of tuning: (a) r = 1, M = 16; (b) r = 10, M = 16
(Global Model).
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Figure 76 (part 2). Closed-loop Kalman filter identification error and vibration for 10% measurement

noise, no probing, and Q = 10 * 16, showing effect of tuning: (c) r = 100, M = 16 (Global Model).
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Figure 77. Closed-loop Kalman filter identification error and vibration for 10% measurement noise,

Q = 10 * 16, r = 100, and M = 16 with 10% probing (Global Model).

tv-

t_o
ILl o

m O

Z_

LI.J

O

_1 t'q

t._lO

LEGEND __ _

UNCOm'IOCLtO v,mm_AnoN__

:_ o 2s0 s00 750 moo

SIMULATION STEP

Figure 78. Closed-loop Kalman filter identification error and vibration for 10% measurement noise,

10% probing, r = 100, M = 16, and Q = 10 * 16, showing effect of continuous transfer-matrix

variation (Global Model)•
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Figure 79 (part 1). Closed-loop LMS filter identification error and vibration for no measurement

noise and no probing, showing effect of (a) Ks= 0.05; (b) K s = 0.02 (Global Model).
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Figure 79 (part 2). Closed-loop LMS filter identification error and vibration for no measurement

noise and no probing, showing effect of (c) K s = 0.01 (Global Model).
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Figure 80. Closed-loop LMS filter identification error and vibration for no probing with K s = 0.01,

showing effect of 10% measurement noise (Global Model).
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Figure 81. Closed-loop LMS filter identification error and vibration for 10% measurement noise and
K s = 0.01 showing effect of 10% probing (Global Model).

126



i 1 ii

0 250

SIMULATION STEP

(a)

t_

t_ .

t-d o

m O
Z_

we; ........................... "l ....

o

tu (b)

U") _N¢OHTROLL£D VI|RATION

-- ........................... i ............................................. - -C'_. T-R0 L-L_'O-vTt]t._lri'O-H- - "

0 250 500 750 I000

SIMULATION STEP

Figure 82. Closed-loop LMS filter identification error and vibration for 10% measurement noise and

10% probing, showing effect of continuous transfer-matrix variation: (a) K s = 0.01; (b) K s = 0.001
(Global Model).
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Figure 83. Closed-loop generalized Kalman filter identification error and vibration for no probing.

R = I00, M = 16, and multi-step batch size n = 1" (a) no measurement noise; (b) 10% measurement

noise (Global Model).
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Figure 84. Closed-loop generalized Kalman filter identification error and vibration for 10%

measurement noise, R = 100, and M = 16, showing effect of multi-step batch size n: (a) n = 4;

(b) n = 6 (Global Model). 129
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Figure 85. Closed-loop generalized Kalman filter identification error and vibration for 10%

measurement noise, R = 100, M = 16, and multi-step batch size n = 4 showing effect of CA:

(a) 4-cycle averaging; (b) 8-cycle averaging (Global Model).
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Figure 86. Closed-loop generalized Kalman filter identification error and vibration for 10%
measurement noise, R = 100, M = 16, multi-step batch size n = 4, and 8-cycle averaging showing

effect of 10% probing (Global Model).
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Figure 87. Closed-loop generalized Kalman filter identification error and vibration for 10%

measurement noise, no probing, R = 100, M = 16, multi-step batch size n = 1, and no cycle

averaging, showing effect of continuous transfer-matrix variation (Global Model).
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Figure 88. Closed-loop generalized LMS filter identification error and vibration for 10%

measurement noise, no probing, K s- 0.01 * 16, multi-step batch size n = 4 and 4-cycle averaging
(Global Model).
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Figure 89. Closed-loop generalized LMS filter identification error and vibration for |0%

measurement noise, 10% probing, K s = 0.00l * I6, multi-step batch size n = 4, and no cycle
averaging (Global Model).
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Figure 90. Closed-loop generalized LMS filter identification error and vibration for 10%

measurement noise, no probing, K s = 0.001 * 16, multi-step batch size n = 4, and no cycle

averaging, showing effect of continuous transfer-matrix variation (Global Model).
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Figure 91. Comparison of local model, open-loop identification error for 10% measurement noise:

(a) weighted least squares with batch size n = 24; (b) Kalman filter, M = 10 * 16, r = 1, Q = 10;

(c) LMS filter, K s = 0.3; (d) generalized Kalman filter, multi-step batch size n = 4, M = 16, R = 10;

(e) generalized LMS filter, multi-step batch size n = 4, K s = 0.1 * 16.
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Figure 92. Comparison of Local Model, closed-loop identification error for the case of 10%

measurement noise and a single change in the transfer matrix at simulation step 100: (a) error without

identification; (b) weighted least squares with n = 24, 10% probing, and "zero-vibration" = 0.20;

(c) Kalman filter with r = 100, M = 16, Q = 10 * 16, and 10% probing; (d) LMS filter with K s = 0.1

and 10% probing; (e) generalized Kalman filter with R = 1, M = 10 * 16, batch size n = 4, 4-cycle

averaging, and 10% probing; (f) generalized LMS filter with K s = 0.1 * I6, batch size n = 8, and

4-cycle averaging.
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Figure 93. Comparison of Local Model, closed-loop vibration index for the case of 10%

measurement noise and a single change in the transfer matrix at simulation step 100: (a) without

identification; (b) weighted least squares with n = 24, 10% probing, and "zero-vibration" = 0.20;

(c) Kalman filter with r = 100, M = 16, Q = 10 * 16, and 10% probing; (d) LMS filter with Ks= 0.1

and 10% probing; (e) generalized Kalman filter with R = 1, M = 10 * 16, batch size n = 4, 4-cycle

averaging, and 10% probing; (f) generalized LMS filter with K s = 0.1 * 16, batch size n = 8, and

4-cycle averaging.
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Figure 94. Comparison of Local Model, closed-loop identification error for the case of 10%

measurement noise and continuous variation of the transfer matrix: (a) error without identification;

(b) weighted least squares with n = 24 and "zero-vibration" = 0.20; (c) Kalman filter with r = 100,

M = I6, Q = 10 * I6; (d) LMS filter with K s = 0.1 and 10% probing; (e) generalized Kalman filter

with R = 1, M = 10 * 16, batch size n = 4, 8-cycle averaging, and 10% probing; (f) generalized

LMS filter with K s = 0.01 * 16, batch size n = 4, no cycle averaging, and 10% probing.
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Figure 95. Comparison of Local Model, closed-loop vibration index for the case of 10%

measurement noise and continuous variation of the transfer matrix: (a) without identification;

(b) weighted least squares with n = 24 and "zero-vibration" = 0.20; (c) Kalman filter with r = 100,

M = 16, Q = 10, (d) LMS filter with K s = 0.1 and 10% probing; (e) generalized Kalman filter with

R -- 1, M - l0 * I6, batch size n = 4, 8-cycle averaging, and 10% probing; (f) generalized LMS

filter with K s = 0.01 * 16, batch size n = 4, no cycle averaging, and 10% probing.
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Figure 96. Comparison of global model, closed-loop identification error for the case of 10%

measurement noise and a single change in the transfer matrix at simulation step 100: (a) error without

identification; (b) weighted least squares with n -- 24 and "zero-vibration" = 0.20; (c) Kalman filter

with r = 100, M = 16, Q = 10 * 16, and 10% probing; (d) LMS filter with K s = 0.01 and 10%

probing; (e) generalized Kalman filter with R = 100, M = 16, batch size n = 1, and no cycle-

averaging; (f) generalized LMS filter with K s = 0.01 * 16, batch size n = 4, and 4-cycle averaging.
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Figure 97. Comparison of global model, closed-loop vibration index for the case of 10%

measurement noise and a single change in the transfer matrix at simulation step 100: (a) without

identification; (b) weighted least squares with n = 24 and "zero-vibration" = 0.20; (c) Kalman filter

with r = 100, M = 16, Q = 10 * 16, and 10% probing: (d) LMS filter with K s = 0.01 and 10%

probing; (e) generalized Kalman filter with R = 100, M = It, batch size n = 1, and no cycle-

averaging; (f) generalized LMS filter with K s = 0.01 * 16, batch size n = 4, and 4-cycle averaging.
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Figure 98. Comparison of global model, closed-loop identification error for the case of 10%
measurement noise and continuous variation of the transfer matrix: (a) error without identification;

(b) weighted least squares with n = 24 and "zero-vibration" = 0.20; (c) Kalman filter with r = 100,

M = I6, and Q = l0 * I6; (d) LMS filter with K s = 0.001 and 10% probing; (e) generalized Kalman

filter with R = 100, M = 16, batch size n = l, and no cycle-averaging; (f) generalized LMS filter with

K s = 0.001 * 16, batch size n = 4, and 4-cycle averaging.
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Figure 99. Comparison of global model, closed-loop vibration index for the case of 10%

measurement noise and continuous variation of the transfer matrix: (a) without identification;

(b) weighted least squares with n = 24 and "zero-vibration" = 0.20; (c) Kalman filter with r = 100,

M = I6, and Q = 10; (d) LMS filter with K s = 0.001 and 10% probing; (e) generalized Kalman filter

with R = I00, M = 16, batch size n = 1, and no cycle-averaging; (f) generalized LMS filter with

K s -- 0.001 * 16, batch size n = 4, and 4-cycle averaging.
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